考虑环境温度的钢管约束混凝土柱拟静力试验研究

王力1, 潘启仁1, 顾皓玮1, 胡琦1, 2, 虞庐松1, 李子奇1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 155-168.

PDF(6414 KB)
PDF(6414 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 155-168.
土木工程

考虑环境温度的钢管约束混凝土柱拟静力试验研究

  • 王力1,潘启仁*1,顾皓玮1,胡琦1,2,虞庐松1,李子奇1,2
作者信息 +

Quasi-static tests of steel tube confined concrete columns considering envionmental temperature

  • WANG Li1, PAN Qiren*1, GU Haowei1, HU Qi1,2, YU Lusong1, LI Ziqi1,2
Author information +
文章历史 +

摘要

为研究不同环境温度下钢管约束混凝土柱的抗震性能,开展了9根不同温度工况下的钢管约束混凝土柱拟静力试验,分析各试件在不同温度下的试验现象及破坏形态,揭示环境温度对钢管约束混凝土柱抗震性能的影响机理。针对现行钢管约束混凝土骨架曲线模型计算方法中未考虑环境影响的不足,基于试验和有限元计算结果,提出了考虑环境温度影响的钢管约束混凝土理论骨架曲线特征点温度修正计算公式。结果表明:环境温度变化引起的钢管约束混凝土材料变异和温度附加套箍效应对试件水平承载力和延性影响显著,环境高温(60℃)会使核心混凝土强度降低,且在钢-混凝土界面易发生脱粘脱空,导致试件承载力和延性分别下降9.4%、12.2%;低温(-40℃)工况下,由于核心混凝土强度提高,同时外壁钢管对核心混凝土的约束作用加强,使试件承载力提升18.7%,但其延性最大降低47.2%,对抗震产生不利影响;本文所提考虑环境温度影响的钢管约束混凝土理论骨架曲线具有较好的可靠性和精度,可为高寒大温差地区该类型结构的抗震设计提供必要理论依据。

Abstract

To study the seismic performance of steel tube confined concrete columns under different ambient temperatures, nine quasi-static tests of steel tube confined concrete columns under different temperature conditions were conducted. The test phenomena and failure modes of each specimen under different temperatures were analyzed, revealing the mechanism of the influence of ambient temperature on the seismic performance of steel tube confined concrete columns. In view of the lack of consideration of environmental effects in the current calculation method for the theoretical skeleton curve model of steel tube confined concrete, based on experimental and finite element calculation results, a temperature correction formula for the characteristic points of the theoretical skeleton curve of steel tube confined concrete considering the influence of environmental temperature is proposed. The results show that the material variation of steel tube confined concrete caused by the change of ambient temperature and the Temperature-induced additional constraint effect have a significant effect on the horizontal bearing capacity and ductility of the specimens. Under the condition of high temperature (60 °C), the bearing capacity and ductility of the specimens decrease by 9.4 % and 12.2 % respectively due to the decrease of the strength of the core concrete and the debonding of the steel-concrete interface. Under low-temperature (-40℃) condition, due to the increase in the strength of the core concrete, and at the same time, the outer wall steel pipe strengthens the restraining effect on the core concrete, so that the specimen bearing capacity increases by 18.7%, but its ductility decreases by a maximum of 47.2%, which has a negative impact on seismic resistance. The theoretical skeleton curve of steel tube confined concrete considering the influence of ambient temperature proposed in this paper has good reliability and accuracy, which can provide the necessary basis for the design of steel tube confined concrete in high cold and large temperature difference areas.

关键词

钢管约束混凝土 / 环境温度 / 拟静力试验 / 理论骨架曲线 / 温度附加套箍效应

Key words

Steel tube confined concrete (STCC) / ambient temperature / Quasi static test / Theoretical skeleton curve / Temperature-induced additional constraint effect

引用本文

导出引用
王力1, 潘启仁1, 顾皓玮1, 胡琦1, 2, 虞庐松1, 李子奇1, 2. 考虑环境温度的钢管约束混凝土柱拟静力试验研究[J]. 振动与冲击, 2025, 44(5): 155-168
WANG Li1, PAN Qiren1, GU Haowei1, HU Qi1, 2, YU Lusong1, LI Ziqi1, 2. Quasi-static tests of steel tube confined concrete columns considering envionmental temperature[J]. Journal of Vibration and Shock, 2025, 44(5): 155-168

参考文献

[1] 周绪红,刘界鹏,王宣鼎.钢管约束混凝土结构[M].北京:科学出版社,2023.
[2] 欧智菁,颜建煌,俞杰,等.装配式圆钢管约束混凝土桥墩抗震性能研究[J].振动与冲击,2022,41(18):47-54.
Ou Zhijing, Yan Jianhuang, Yu Jie, et al. Seismic performances of fabricated circular steel tube confined concrete piers[J]. Journal of Vibration and Shock, 2022,41(18):47-54.
[3] Yan J B, Xie J. Experimental studies on mechanical properties of steel reinforcements under cryogenic temperatures[J]. Construction and Building Materials, 2017, 151: 661-672.
[4] 王传星, 谢剑, 李会杰.低温环境下混凝土性能的试验研究[J].工程力学,2011,28(S2):182-186.
Wang Chuanxing, Xie Jian, Li Hui-jie. Experimental research on the properties of concrete under low-temperature[J]. Engineering Mechanics, 2011,28(S2):182-186.
[5] 黄明,朱铁松,刘俊禹等.厂房钢管混凝土柱冬施质量通病及处理[J].混凝土,2008(09):108-109.
Huang Ming, Zhu Tiesong, Liu Junyu et al. Common quality problems and treatment of concrete-filled steel tube column in winter. Concrete,2008(09):108-109.
[6] 王玉银,王庆贺,刘昌永.钢管混凝土柱低温开裂典型事故分析[A].中国钢结构协会钢—混凝土组合结构分会第十三次学术[C],2011
Wang Yuyin, Wang Qinghe, Liu Changyong. Analysis of typical accidents of low temperature cracking of concrete-filled steel tube column [A]. The 13th Academic Session of Steel-Concrete Composite Structure Branch of China Steel Structure Association [C],2011
[7] Song T Y, Tao Z, Han L H, et al. Bond behavior of concrete-filled steel tubes at elevated temperatures[J]. Journal of Structural Engineering, 2017, 143(11): 04017147.
[8] Yan J B, Xie W, Zhang L, et al. Bond behaviour of concrete-filled steel tubes at the Arctic low temperatures[J]. Construction and Building Materials, 2019, 210: 118-131.
[9] Chen Z, Jia H, Li S. Bond behavior of recycled aggregate concrete-filled steel tube after elevated temperatures[J]. Construction and Building Materials, 2022, 325: 126683.
[10] Chen Z, Tang J, Zhou X, et al. Interfacial bond behavior of high strength concrete filled steel tube after exposure to elevated temperatures and cooled by fire hydrant[J]. Materials, 2019, 13(1): 150.
[11] Zheng S, Liang Z, Du Y, et al. Advancements in interfacial bonding performance of concrete-filled steel tube members[J]. Journal of Constructional Steel Research, 2024, 213: 108346.
[12] Yu M, Pei X, Xu L, et al. A unified formula for calculating bending capacity of solid and hollow concrete-filled steel tubes under normal and elevated temperature[J]. Journal of Constructional Steel Research, 2018, 141: 216-225.
[13] Zhang R, Liu J, Wang W, et al. Fire behaviour of thin-walled steel tube confined reinforced concrete stub columns under axial compression[J]. Journal of Constructional Steel Research, 2020, 172: 106180.
[14] Yang X, Tang C, Chen Y, et al. Compressive behavior of steel-reinforced concrete-filled square steel tubular stub columns after exposure to elevated temperature[J]. Engineering Structures, 2020, 204: 110048.
[15] Wang F, Liu F, Yang H, et al. Axial compressive performances of thin-walled steel tube confined steel-reinforced concrete columns after fire exposure[J]. Thin-Walled Structures, 2023, 190: 110919.
[16] Wang F, Liu F, Tan K H, et al. Post-fire performance of circular steel tube confined steel-reinforced concrete slender columns: Testing, simulation and design[J]. Engineering Structures, 2024, 298: 117084.
[17] Wang L, Liu B, Li Z Q, et al, et al. Experimental study on axial compression properties of concrete filled steel tubular stub columns in varying ambient temperature[J]. Advances in Structural Engineering, 2024: 13694332241232050. 
[18] Yan J B, Wang T, Dong X. Compressive behaviours of circular concrete-filled steel tubes exposed to low-temperature environment[J]. Construction and Building Materials, 2020, 245: 118460. 
[19] Yan J B, Wenjun X, Wang Y, et al. Behaviours of concrete stub columns confined by steel tubes at cold-region low temperatures[J].Journal of Constructional Steel Research, 2020, 170:106124.
[20] 虞庐松,刘彪,王力,等.高寒环境温度下圆钢管混凝土短柱轴压性能试验研究[J].土木工程学报,2023,56(10):20-31.
Yu Lusong, Liu Biao, Wang Li. et al. Experimental study on axial compression performance of CFST stub columns under very-cold ambient temperature[J]. China Civil Engineering Journal, 2023,56(10):20-31.
[21] 王力,潘启仁,周晓夫,等.基于F-J-M法的桥梁温度与地震作用效应组合研究[J].防灾减灾工程学报,2024,44(02):273-282. 
Wang Li, Pan Qiren, Zhou Xiaofu, et al. Study on the combination of bridge temperature and seismic effect based on F-J-M method[J]. Journal of Disaster Prevention and Mitigation Engineering,2024,44(02):273-282.
[22] 虞庐松,王庚,王力,等.高寒环境温度下钢管混凝土柱抗震性能试验研究[OA/J].地震工程学报,1-8.
Yu Lusong, Wang Geng, Wang Li, et al. Experimental study on seismic performance of concrete filled steel tubular columns under high-cold ambient temperature[OA/J]. China Earthquake Engineering Journal,1-8.
[23] GB/T 50081—2019 混凝土物理力学性能试验方法标准[S]. 北京:中国建筑工业出版社,2019. 
[24] GB/T 228. 1—2010 金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国标准出版社,2010.
[25] 金属材料 拉伸试验 第3部分:低温试验方法. [S], 北京:中国标准出版社, 2019.
[26] 王力,潘启仁,张宇星,等.考虑温度附加套箍效应的钢管约束混凝土轴压承载力解析法[J/OL].工程科学与技术,1-15[2024-08-20].
Wang Li, Pan Qiren, Zhang Yuxing, et al. Analytical Calculation Method for the Axial Compressive Bearing Capacity of Steel Tube Confined Concrete Considering the Additional Hoop Effect of Temperature[J/OL].Advanced Engineering Sciences,1-15[2024-08-20]
[27] 韦建刚,周俊,罗霞,等.高强钢管超高强混凝土柱抗震性能试验研究[J].工程力学,2021,38(07):30-40+51.
Wei Jiangang, Zhou Jun, Luo Xia, et al. Experimental study on ouasl-static behavior of ultra high strength concrete filled high strength steel tubular columns[J]. Engineering Mechanics, 2021,38(07):30-40+51.
[28] 周绪红,刘界鹏.钢管约束混凝土柱的性能与设计[M].北京:科学出版社,2010.
[29] Wang L, Yang X J, Li Z Q, et al. Experimental study on the interfacial bonding performance of concrete-filled steel tubes at different ambient temperatures[J]. Thin-Walled Structures, 2024: 112368.
[30] 郝际平,黄育琪,樊春雷,等.带约束拉杆壁式钢管混凝土柱拟静力试验研究[J].工程力学,2021,38(12):39-48.
Hao Ji-ping, Huang Yu-qi, Fan Chun-lei, et al. Quasi-static tests of walled concrete-filled steel tubular columns with binding bars[J]. Engineering Mechanics, 2021,38(12):39-48.
[31] Fu T, Ren X, Wang K, et al. Seismic performance of prefabricated steel tube-confined concrete circular pier[J].Structures,2022, 43: 910-925.
[32] Liang Y, Shen Q, Wang J, et al. Investigations on the seismic behaviour of concrete-filled thin-walled elliptical steel tubular column: Testing and novel FE modelling[J]. Thin-Walled Structures, 2023, 191: 111029.
[33] J. B. Mander,PRIESTLEY M J N , PARK  R, et al. Theoretical Stress-Strain Model or for Confined Concrete[[J]. Journal of the Structural Devision, 1988, 114.
[34] 张行,张谢东.钢筋混凝土柱拟静力试验数值模拟分析[J].工程抗震与加固改造,2013,35(05):30-35+60.
Zhang Hang ,Zhang Xiedong. Numerical analysis of pseudo-static tests of RC columns[J].Earthquake Resistant Engineering and Retrofitting,2013,35(05):30-35+60.
[35] 陈骥,钢结构稳定理论与设计[M].4版.北京:科学出版社,2008:217-224.
[36] 于清,陶忠,陈志波,等.钢管约束混凝土纯弯构件抗弯力学性能研究[J].工程力学,2008,(03):187-193.
Yu Qing, Tao Zhong, Chen Zhibo, et al. Flexural behavior of steel tube confined concrete members under pure bending[J]. Engineering Mechanics, 2008,(03):187-193.
[37] 韩林海.钢管混凝土结构-理论与实践[M].第3版.北京:科学出版社,2016.
[38] 卫秋,查晓雄,余敏.空心普通和再生钢管混凝土柱抗震性能研究Ⅰ:试验与有限元研究[J].建筑钢结构进展,2012,14(03):27-35.
Wei Qiu, Cha Xiaoxiong, Yu Min. Seismic Behavior Study of Hollow Ordinary Concrete and Recycled Aggregate Concrete Filled Steel Tubular (CFST) Columns I: Experimental and FEM Study[J]. Progress in Steel Building Structures,2012,14(03):27-35.


PDF(6414 KB)

Accesses

Citation

Detail

段落导航
相关文章

/