土—结构相互作用体系实模态近似解耦及地震响应分析

王昌盛1, 林建好1, 杨艳1, 徐家云2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 184-190.

PDF(1423 KB)
PDF(1423 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 184-190.
地震科学与结构抗震

土—结构相互作用体系实模态近似解耦及地震响应分析

  • 王昌盛*1,林建好1,杨艳1,徐家云2
作者信息 +

Real mode approximate decoupling and seismic response analysis of soil-structure interaction system

  • WANG Changsheng*1, LIN Jianhao1, YANG Yan1, XU Jiayun2
Author information +
文章历史 +

摘要

针对土—结构相互作用体系运动方程存在耦合模态阻尼矩阵在实数域内无法精确解耦的问题。首先采用强迫解耦法对非经典阻尼矩阵进行解耦,然后分析强迫解耦法造成的误差,提出采用实模态近似解耦法对结构体系进行求解,同时结合Laplace变换将体系响应用系列标准振子的位移和速度的线性组合来表示。通过算例分析可知,采用实模态近似解耦法求得的结构地震响应与精确复模态法求得的结果吻合较好,其精度高于强迫解耦法。尤其在分析土—结构相互作用体系上部结构动力响应时,其优势更为凸显。所提的实模态近似解耦法精度较高、避免了复数域内运算且工程意义便于理解,可推广应用到其它具有非经典阻尼特性的结构体系中。

Abstract

Aiming at the problem that the coupled modal damping matrix cannot be accurately decoupled in the real number domain in the motion equation of soil-structure interaction system. Firstly, the forced decoupling method is used to decouple the non-classical damping matrix, and then the error caused by the forced decoupling method is analyzed. The real mode approximate decoupling method is proposed to solve the structural system. At the same time, the system response is expressed by the linear combination of displacement and velocity of a series of standard oscillators combined with Laplace transform. Through the example analysis, it can be seen that the seismic response of the structure obtained by the real mode approximate decoupling method is in good agreement with the results obtained by the accurate complex mode method, and its accuracy is higher than that of the forced decoupling method. Especially in the analysis of the dynamic response of the superstructure of the soil-structure interaction system, its advantages are more prominent. The proposed real mode approximate decoupling method has high accuracy, avoids the operation in the complex domain, and is easy to understand in engineering significance. It can be applied to other structural systems with non-classical damping characteristics.

关键词

土—结构相互作用 / 非经典阻尼 / 实模态近似解耦法 / 地震响应

Key words

soil-structure interaction / non-classical damping / real mode approximate decoupling method / seismic response

引用本文

导出引用
王昌盛1, 林建好1, 杨艳1, 徐家云2. 土—结构相互作用体系实模态近似解耦及地震响应分析[J]. 振动与冲击, 2025, 44(5): 184-190
WANG Changsheng1, LIN Jianhao1, YANG Yan1, XU Jiayun2. Real mode approximate decoupling and seismic response analysis of soil-structure interaction system[J]. Journal of Vibration and Shock, 2025, 44(5): 184-190

参考文献

[1] 张昊,康帅,王自法,等. 考虑土-结构相互作用的框架结构抗震性能分析[J].世界地震工程, 2022, 38 (02): 29-37.
ZHANG Hao,KANG Shuai,WANF Zifa,et al.Seismic performance analysis of frame structures considering soil-structure interaction[J].World Earthquake Engineering,2022,38(02):29-37.
[2] Mohammed E H , Jianxun M , Dong L Y Y .Investigation of small-scaled soil structure model under earthquake loads via small shaking table tests[J].Shock And Vibration, 2022, 2022(1):1-16.
[3]  ABDULAZIZ M, HAMOOD M J, FATTAH M. A review study on seismic behavior of individual and adjacent structures considering the soil – Structure interaction [J]. Structures, 2023, 52:348-369.
[4] 赵凯,夏高旭,王彦臻,等.土–地下结构相互作用的三维弱耦合有效应力分析法[J].岩土工程学报,2022,44(05):861-869.
ZHAO Kai, XIA Gaoxu, WANG Yanzhen,et al. Three-dimensional loosely coupled effective stress method for seismic soil-structure interactions[J]. Chinese Journal of Geotechnical Engineering,2022,44(05):861-869.
[5] 张国栋.土与结构相互作用体系随机地震反应分析[D].武汉大学,2004.
ZHANG Guodong. Random seismic response analysis of soil-structure interaction system[D]. Wuhan University,2004.
[6] 赵密,王维伟,黄景琦,等.地震作用下土-结构相互作用的简化时程分析[J].防灾减灾工程学报,2022,42(01):111-117. 
ZHAO Mi,WANG Weiwei,HUANG Jingqi,et al. Simplified time history analysis for soil-structure interaction under earthquake[J].Journal of Disaster Prevention and Mitigation Engineering, 2022,42 (01):111-117.
[7] 胡静静,余丁浩,李钢,等.考虑土-结相互作用的大型结构高效地震分析方法[J].工程力学,2024,41(03):135-149.
HU Jingjing , YU Dinghao , LI Gang,et al. Efficient seismic analysis method of large structures considering soil-structure interaction[J]. Engineering    Mechanics, 2024,41(03):135-149. 
[8] 张之颖,吕西林,曹文清.软基上土-结构相互作用体系的一个广义简化动力计算模型[J].土木工程学报,2004,(05):70-77.
ZHANG Zhiying,LU Xilin,CAO Wenqing. A simplified dynamic model of ssi system on soft soil foundation[J]. China Civil Engineering Journal,2004,(05):70-77.
[9]  陈灯红,杜成斌.结构-地基动力相互作用的时域模型[J].岩土力学,2014,35(04):1164-1172.
CHEN Denghong,DU Chengbin. A computational model for structure-foundation dynamic interaction in time domain[J].Rock and Soil Mechanics,2014,35(04):1164 -1172.
[10] Zhan P ,Xue S ,Li X , et al. Seismic assessment of large-span spatial structures considering soil–structure interaction (SSI): a state-of-the-art review [J]. Buildings, 2024, 14 (4): 1174.
[11] 姜忻良,张海顺.土-结构非线性相互作用混合约束模态实施方法[J].振动与冲击,2015,34(06):52-56.
JIANG Xinliang,ZHANG Haishun. Mixed constraint modal method for nonlinear soil-structure interaction[J]. Journal of Vibration and Shock,2015,34(06):52-56.
[12] 禹海涛,李衍熹.土-结构动力作用体系混合试验研究进展与探讨[J].中国公路学报,2020,33(12):105-117. 
YU Haitao, LI Yanxi. Review and discussion on recent progress of hybrid simulation for soil - structure dynamic interaction system[J].China Journal of Highway and Transport, 2020,33 (12):105-117.
[13] 唐元辰,陈清军.土-综合体结构相互作用体系地震反应影响因素研究[J].结构工程师,2023,39(03):61-71.
TANG Yuanchen, CHEN Qingjun. Study on Influencing Factors of Seismic Response of Soil-Complex Structure Interaction System [J]. Structural Engineers,2023,39(03):61-71.
[14] 王国波,王垚,王建宁,等.土-结构群相互作用体系地震响应振动台试验研究[J].震灾防御技术,2022,17(04):611-621.
WANG Guobo, WANG Yao, WANG Jianning,et al. Shaking table test study on seismic response of soil-structure cluster interaction system[J]. Technology for Earthquake Disaster Prevention,2022,17(04):611-621.
[15] Çağrı İmamoğlu, Murat Dicleli. Effect of dynamic soil-structure interaction modeling assumptions on the calculated seismic response of railway bridges with single-column piers resting on shallow foundations[J].Soil Dynamics and Earthquake Engineering,2024,181:108624
[16] 景立平,张嘉辉,汪刚等.软土地基核电厂房动力响应振动台试验[J].世界地震工程, 2022, 38 (03): 10-18.
JING Liping,ZHANG Jiahui,WANG Gang,et al. Shaking table test of dynamic response of nuclear power plant on soft soil foundation[J]. World Earthquake Engineering,2022, 38 (03): 10-18.
[17] 潘旦光,付相球,谭晋鹏,等.土-结构相互作用体系结构动力特性复模态识别法[J].建筑结构学报,2023,44(07):196-203.
PAN Danguang, FU Xiangqiu, TAN Jinpeng,et al. Complex-modal-based identification method for structural dynamic characteristics of soil-structure interaction systems[J]. Journal of Building Structures,2023,44(07):196-203.
[18] 潘玉华,王翠坤,时继瑞,等.考虑土-结构相互作用的超高层结构地震非线性分析[J].建筑结构学报,2024,45(06):25-38.
PAN Yuhua, WANG Cuikun, SHI Jirui,et al. Seismic nonlinear analysis of supertall structures considering soil-structure interaction[J].Journal of Building Structures,2024,45(06):25-38.
[19]  Galvín, P, Romero A , Moliner E ,et al. Fast simulation of railway bridge dynamics accounting for soil–structure interaction[J].Bulletin of Earthquake Engineering, 2022, 20 (7) :3195-3213.
[20] 韩庆华,王月,芦燕,等.斜入射地震波下单层球面网壳土-结构相互作用及其地震响应分析[J].振动与冲击,2024,43(03):255-264.
HAN Qinghua,WANG Yue,LU Yan,et al. Soil-structure interaction and seismic response analysis of single-layer reticulated dome under oblique incidence seismic wave[J].Journal of Vibration and Shock,2024, 43(03):255-264.
[21] 谭星,陈卫婷,王陶,等.局部非线性结构的自由界面子结构模态综合法[J/OL].航空学报,1-13[2024-06-23].http://kns.cnki.net/kcms/detail/11.1929.V.20231122.1507.002.html.
TAN Xing, CHEN Weiting, WANG Tao,et al. A free-interface component mode synthesis method for structures with local nonlinearities[J/OL].Acta Aeronautica et Astronautica Sinica,1-13[2024-06-23]. http://kns.cnki.net/kcms/detail/11.1929.V.20231122.1507.002.html.
[22] Zhang Z , Wei H , Qin X .Experimental study on damping characteristics of soil-structure interaction system based on shaking table test[J].Soil Dynamics and Earthquake Engineering, 2017, 98:183-190.
[23] Adhikari S. An iterative approach for nonproportionally damped systems[J].Mechanics Research Communications, 2011, 38(3):226-230.
[24] Suleiman H ,Afra H ,Abdeddaim M , et al. An extension to Adhikari iterative method: A novel approach for obtaining complex eigensolutions in linear non-classically damped systems [J]. Structures, 2024, 60:105832.
[25] 李创第,葛新广,邹万杰,等. 一般非对称非经典结构响应的二阶实振子精确解耦法 [J]. 应用力学学报, 2014, 31 (02): 212-217.
LI Chuangdi,GE Xinguang,ZOU Wanjie,et al. Exact decoupling method of general asymmetric and non-classical structure in second-order real oscillatory vibration[J].Chinese Journal of Applied Mechanics, 2014, 31 (02): 212-217.
[26] 付相球,潘旦光.基于实模态的非比例阻尼体系复模态叠加法[J].振动工程学报,2021,34(06):1142-1150. 
FU Xiangqiu,PAN Danguang. Complex mode superposition method of non – proportional damping system based on real modes[J]. Journal of Vibration Engineering,2021,34(06):1142-1150.
[27] 俞瑞芳,周锡元.非比例阻尼弹性结构地震反应强迫解耦方法的理论背景和数值检验[J].工业建筑,2005,(02):52-56. 
YU Ruifang, ZHOU Xiyuan. Theoretical and numerical research on forced uncoupling method Fors eismic response of non-Classically damped linear system[J].Industrial Construction ,2005,(02):52-56.
[28] Jorge C ,Alejandro B .Non-proportionality indices and error constraint in modal analysis of viscously damped linear structures[J].Applied Sciences,2021,11(13):6064.
[29]  Morzfeld M , Ajavakom N , Ma F .Diagonal dominance of damping and the decoupling approximation in linear vibratory systems[J].Journal of Sound and Vibration, 2008, 320(1):406-420.
[30] Volpi L P, Ritto T G. Probabilistic model for non-proportional damping in structural dynamics[J]. Journal of Sound and Vibration, 2021, 506 (1): 116145.
[31] 秦金旗,唐驾时.非比例结构阻尼系统的振动控制[J]. 湖南大学学报(自科版), 2007, 34(10):49-52. 
QIN Jinqi, TANG Jiashi. Vibration control for non-proportionally structure damping systems[J]. Journal of Hunan University(Natural Sciences) , 2007, 34(10):49-52.

PDF(1423 KB)

Accesses

Citation

Detail

段落导航
相关文章

/