为增强钢结构仿古建筑的震后快速修复能力,提出了一种适用于仿古建筑形制特点的形状记忆合金(shape memory alloy,SMA)杆-摩擦阻尼器串联装置,通过对附加和不附加该串联装置的钢结构仿古建筑梁柱节点试件进行低周反复加载试验,对比分析了两种节点的破坏特征、荷载-位移曲线、刚度、滞回耗能与复位能力等。结果表明:在位移角不超过1.8%时,仅SMA杆被拉伸,随着加载位移继续增大,摩擦阻尼器和SMA杆共同作用。附加SMA杆-摩擦阻尼器串联装置可有效提升钢结构仿古建筑梁柱节点的抗震性能,极限承载力和累计耗能量相应提高了151%、86%,残余位移减小了27%,试件的损伤和变形主要发生在梁柱节点角钢处。建立了带SMA杆-摩擦阻尼器串联装置的钢结构仿古建筑梁柱节点的有限元模型并进行了参数分析,结果表明:节点的极限承载力随着摩擦阻尼器起滑力的增大而增加,随着轴压比的增大而降低,而SMA杆预紧力的影响较小可以忽略。
Abstract
To improve the rapid post-earthquake reparability of steel structure antique buildings, this paper proposes a shape memory alloy (SMA) bar-friction damper series device suitable for the characteristics of antique buildings. The cyclic loading tests were conducted on beam-column joints in steel structure antique buildings with and without the proposed device. Properties such as damage characteristics, load-displacement curves, stiffness, hysteretic energy dissipation and recovering capacity of these two types of joints were analyzed. The results showed that only the SMA bars are stretched when the loading displacement angle does not exceed 1.8%, the friction damper and the SMA bars work simultaneously with the increasing of the loading displacement. Installing the SMA bar-friction damper series device around beam-column joints can effectively improve the seismic performance of the steel antique building, the ultimate strength and the cumulative energy dissipation is increased by 151% and 86%, the residual displacement is decreased by 27%, the damage and deformation of the specimen mainly occurs at the steel angles. The finite element models of beam-column joints with SMA bar-friction damper series device in steel antique buildings was established and its parameters are analyzed. The results showed that the bearing capacity of the proposed joint is increasing with the increase of sliding force in friction dampers, and it decreases with the increase of column axial compression ratio, while the effect of the SMA bar preload is negligible.
关键词
钢结构仿古建筑 /
梁柱节点 /
摩擦阻尼器 /
形状记忆合金杆 /
抗震性能
{{custom_keyword}} /
Key words
steel antique building /
beam-column joints /
friction damper /
shape memory alloy bar /
seismic performance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 薛建阳, 吴占景, 隋 龑, 等. 仿古建筑钢结构双梁-柱边节点抗震性能试验研究[J]. 建筑结构学报, 2015, 36(3): 80-89.
XUE Jian-yang, WU Zhan-jing, SUI Yan, et al. Experimental study on seismic performance of steel double-beams column exterior joints in antique style building [J]. Journal of Building Structures, 2015, 36(3): 80-89.
[2] 刘敦桢. 中国古代建筑史[M]. 北京: 中国建筑工业出版社, 1984.
LIU Dun-zhen. History of Ancient Chinese Architecture [M]. Beijing: China Building Industry Press, 1984.
[3] 田永复. 中国仿古建筑构造精解[M]. 北京: 化学工业出版社, 2010.
TIAN Yong-fu. Chinese Antique Architectural Structure Analysis [M]. Beijing: Chemical Industry Press, 2010.
[4] 姚 侃, 赵鸿铁, 葛鸿鹏. 古建木结构榫卯连接特性的试验研究[J]. 工程力学, 2006, 23(10): 168-173.
YAO Kan, ZHAO Hong-tie, GE Hong-peng. Experimental studies on the characteristic of mortise-tenon joint in historic timber buildings [J]. Engineering Mechanics, 2006, 23(10): 168-173.
[5] 周 乾, 闫维明, 周锡元, 等. 古建筑榫卯节点抗震性能试验[J]. 振动.测试与诊断, 2011, 31(6): 679-684.
ZHOU Qian, YAN Wei-ming, ZHOU Xi-yuan, et al. Seismic performance test of mortise and tenon joints in ancient buildings [J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(6): 679-684.
[6] 高延安, 杨庆山, 王娟, 等. 环境激励下古建筑飞云楼动力性能分析[J]. 振动与冲击, 2015, 34(22): 144-148+182.
GAO Yan-an, YANG Qing-shan, WANG Juan, et al. Dynamic performance of the ancient architecture of Feiyun pavilion under the condition of environmental excitation [J]. Journal of Vibration and shock, 2015, 34(22): 144-148+182.
[7] 戚亮杰. 传统风格建筑钢结构体系抗震性能及设计方法研究[D]. 西安: 西安建筑科技大学, 2018.
Qi Liang-jie. Research on seismic performance and design method of traditional-style steel structures [D]. Xi’an: Xi’an University of Architecture and Technology; 2018.
[8] 戚亮杰, 薛建阳, 隋 龑, 等. 全焊传统风格建筑圆钢管柱-箱形截面双梁节点抗剪承载力计算[J]. 工业建筑, 2017, 47(10): 15-19.
Qi Liang-jie, Xue Jian-yang, Sui Yan, et al. Shear capacity calculation of all-welded joints of circle tubular steel column and double box-section beams in traditional style building [J]. Industrial Construction 2017, 47(10): 15-19.
[9] 薛建阳, 吴占景, 隋 龑, 等. 传统风格建筑钢结构双梁-柱中节点抗震性能试验研究及有限元分析[J]. 工程力学, 2016, 33(5): 97-105.
XUE Jian-yang, WU Zhan-jing, SUI Yan, et al. Experimental study and numerical analysis on aseismic performance of steel double-beams-column interior-joints in traditional style building [J]. Engineering Mechanics, 2016, 33(5): 97-105.
[10] 薛建阳, 戚亮杰. 传统风格建筑钢框架结构恢复力模型试验研究[J]. 振动与冲击, 2018, 37(20): 148-153+158.
XUE Jian-yang, QI Liang-jie. An experimental study on the restoring force model of steel frame structures of traditional style buildings [J]. Journal of Vibration and shock, 2018, 37(20): 148-153+158.
[11] 吴占景. 仿古建筑钢结构梁-柱节点抗震性能及减震控制研究[D]. 西安:西安建筑科技大学,2016.
Wu Zhan-jing. Research on seismic performance and seismic control of steel beam-column joint in Chinese antique style buildings [D]. Xi’an: Xi’an University of Architecture and Technology; 2016.
[12] Specher M, Hodgson D E, Desroches R, et al. Shape memory alloy tension/compression device for seismic retrofit of buildings [J]. Journal of Materials Engineering and Performance, 2009, 18: 746-753.
[13] Wang B, Nishiyama M, Zhu S, et al. Development of novel self-centering steel coupling beams without beam elongation for earthquake resilience [J]. Engineering Structures, 2021, 232: 111827.
[14] 钱 辉, 李宏男, 任文杰, 等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报, 2011, 32(9): 58-64.
QIAN Hui, LI Hong-nan, REN Wen-jie, et al. Experimental investigation of an innovative hybrid shape memory alloys friction damper [J]. Journal of Building Structures, 2011, 32(9): 58-64.
[15] 李 诫. 营造法式[M]. 北京: 商务印书馆, 1950: 96-155.
LI Jie (Dynasty Song). Ying-tsao-fa-shin [M]. Beijing: Commercial Press, 1950: 96-155.
[16] GB/T 2975-2018. 钢及钢产品―力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 2018.
GB/T 2975-2018, Steel and steel products―Location and preparation of samples and test pieces for mechanical testing [S]. Beijing: China Standards Press, 2018.
[17] GB/T 228.1-2020. 金属材料拉伸试验 第1部分:室温试验方法[S]. 北京: 中国标准出版社, 2020.
GB/T 228.1-2020. Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S]. Beijing: China Standards Press, 2020.
[18] ANSI/AISC 341-16. Seismic Provisions for Structural Steel Buildings[S]. Chicago: American Institute of Steel Construction, 2016
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}