某埋头弹火炮复合型减后坐技术研究

彭碧荣 1, 薛晓春 1, 曹永杰 2, 黄磊 1, 余永刚 1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 243-252.

PDF(2500 KB)
PDF(2500 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 243-252.
冲击与爆炸

某埋头弹火炮复合型减后坐技术研究

  • 彭碧荣 1, 薛晓春*1, 曹永杰 2, 黄磊 1, 余永刚 1
作者信息 +

Composite recoil reduction technology for a certain cased telescoped ammunition gun

  • PENG Birong1, XUE Xiaochun*1, CAO Yongjie2, HUANG Lei1, YU Yonggang1, WANG Hongjin2
Author information +
文章历史 +

摘要

为解决某40mm埋头弹火炮炮口动能大导致系统后坐力过大的问题,提出一种将炮口制退器、膨胀波技术两者有机结合的复合减后坐技术。基于此技术,建立了埋头弹膨胀波火炮的内弹道方程,分析了其内弹道时期膛内压力、速度和身管受力等随时间的变化规律。并在此基础上,基于三维非定常Navier-Stocks方程,结合动网格技术,对该埋头弹火炮后效期的膛口流场进行了数值模拟,重点揭示了火药燃气流动对制退器受力特性的影响,并对比分析含有该复合减后坐技术与不含该技术的两种埋头弹火炮在整个内弹道及后效期的后坐力和后坐冲量变化特性。研究结果表明:在保持弹丸初速不变的情况下,采用该复合减后坐技术可以有效降低埋头弹火炮的后坐力,将后坐冲量从1720.36 N•s降低至306.04 N•s,减后坐效率达到82.2%。

Abstract

 In order to solve the problem of excessive system recoil caused by the large kinetic energy of the muzzle of a 40mm submerged bullet artillery gun, a composite recoil reduction technology that combines the muzzle brake and expanding wave technology is proposed. Based on this technology, the internal ballistic equation of the submerged bullet expanding wave artillery was established, and the change rule of the chamber pressure, velocity and body tube force with time during the internal ballistic period was analyzed. On this basis, based on the three-dimensional non-constant Navier-Stocks equation, combined with the dynamic mesh technology, the numerical simulation of the breech flow field during the after-effect period of the submerged projectile gun is carried out, which focuses on revealing the influence of the gunpowder and gas flow on the force characteristics of the retractor, and comparing and analyzing the recoil and recoil impulse change characteristics of the two submerged projectile guns containing the composite recoil reduction technology and the two types of submerged projectile guns without this technology in the entire internal ballistic path and the after-effect period. The results of the study show that the recoil and recoil impulse of the two types of submerged projectiles with the composite recoil reduction technology and without the technology are analyzed in comparison. The results of the study show that the composite recoil reduction technology can effectively reduce the recoil force of the submerged projectile gun and reduce the recoil impulse from 1720.36 N-s to 306.04 N-s, with a recoil reduction efficiency of 82.2%, while keeping the muzzle velocity of the projectile unchanged.

关键词

埋头弹火炮 / 膨胀波技术 / 炮口制退器 / 减后坐 / 后坐冲量

Key words

cased telescoped ammunition gun / rarefaction wave technology / muzzle brake / recoil reduction / recoil impulse

引用本文

导出引用
彭碧荣 1, 薛晓春 1, 曹永杰 2, 黄磊 1, 余永刚 1. 某埋头弹火炮复合型减后坐技术研究[J]. 振动与冲击, 2025, 44(5): 243-252
PENG Birong1, XUE Xiaochun1, CAO Yongjie2, HUANG Lei1, YU Yonggang1, WANG Hongjin2. Composite recoil reduction technology for a certain cased telescoped ammunition gun[J]. Journal of Vibration and Shock, 2025, 44(5): 243-252

参考文献

[1] 宁国栋. 应对未来战争的精确打击武器发展趋势研究[J]. 战术导弹技术,2019(1):1-9.
Ning Guodong, Trend Analysis of Precision Strike Weapon Development in Future Warfare [J]. Tactical Missile Technology,2019(1):1-9.
[2] Zou H, Lu X, Zhou Y H, et al. A New Firing Charge Concept of Increasing Intelligent Ammunition Muzzle Velocity[J]. Chinese Journal of Energetic Materials, 2014, 22(6): 834-839.
[3] 师军飞,钱林方,陈红彬,等. 埋头弹高速冲击挤进入膛特性研究[J]. 兵工学报,2023,44(3):656-669.
SHI Junfei, QIAN Linfang, CHEN Hongbin et al. High-Speed Impact Engraving Characteristics of Cased Telescoped Ammunition [J]. ACTA ARMAMENTARII,2023,44(3):656-669.
[4] 熊佳敏,陆欣. 埋头弹装药药粒破碎模型研究[J]. 兵器装备工程学报,2022,43(8):140-145.
XIONG Jiamin, LU Xin, Study on model of grain fracture in charge structureof cased telescoped ammunition [J]. Journal of Ordnance Equipment Engineering, 2022,43(8):140-145.
[5] 陈玉璐. 埋头弹火炮发射过程中身管传热特性研究[D]. 江苏:南京理工大学,2022.
CHEN Yulu. Study on Heat Transfer Characteristics of a Cased Telescoped Ammunition Gun Barrel During the Lunching Process [D]. Jiangsu:Nanjing University of Science and Technology, 2022.
[6] 金永灿. 机枪减后坐研究与动力学仿真分析[D]. 江苏:南京理工大学,2016.
JING Yongcang. Machine gun recoil reduction research and dynamic simulation analysis [D]. Jiangsu:Nanjing University of Science and Technology, 2016.
[7] 司鹏. 某链式炮侧向后喷稀疏波减后坐技术研究[D]. 江苏:南京理工大学,2020.
SI Peng. Research on the sparse wave reduction recoil technology of a chain gun side-spray back [D]. Jiangsu:Nanjing University of Science and Technology, 2020.
[8] Tao R, Sun J, Huang M, et al. Interior ballistics numerical simulation and experiment on balance gun with low and high pressure chamber[J]. JOURNAL-NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY, 2006, 30(4): 478.
[9] Jiang Z, Tao G, Li Z, et al. An Analysis and Calculation Method for One‐Dimensional Balanced Interior Ballistics of a Recoilless Gun[J]. Propellants, Explosives, Pyrotechnics, 2022, 47(11): e202200124.
[10] Li P, Zhang X. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion[J]. Defence Technology, 2021, 17(4): 1178-1189.
[11] 肖俊波,杨国来,李洪强,等. 炮口制退器与缓冲器匹配对后坐力的影响[J]. 弹道学报,2017,29(4):86-92.
XIAO Junbo,YANG Guolai,LI Hongqiang, et al. nfluences of Matching Muzzle Brake and Buffer on Weapon Recoil [J]. Journal of Ballistics, 2017,29(4):86-92.
[12] 张焕好,陈志华,姜孝海,等. 膛口装置三维流场的数值模拟及制退效率计算[J]. 兵工学报,2011,32(5):513-519.
ZHANG Huanhao,CHEN Zhihua,JIANG Xiaohai, et al. Numerical Simulation of the 3 D Flow Fields of a Muzzle Brake and Its Efficiency Calculation [J]. ACTA ARMAMENTARII, 2011,32(5):513-519.
[13] 赵欣怡,周克栋,赫雷,等. 带制退器的膛口射流噪声数值模拟与实验研究[J]. 爆炸与冲击,2019,39(10):49-57. 
ZHAO Xinyi, ZHOU Kedong, HAO Lei, et al. Numerical simulation and experimental study of muzzle jet noise with brake [J]. EXPLOSION AND SHOCK WAVES, 2019,39(10):49-57.
[14] Chaturvedi E, Dwivedi R K. Computer aided design and analysis of a tunable muzzle brake [J]. Defence Technology, 2019, 15(1): 89-94.
[15] 王颖泽,张小兵. 膨胀波火炮发射性能计算分析[J]. 高压物理学报,2009,23(6):433-440.
WANG Yingze, ZHANG Xiaobing. Calculation and analysis of the firing performance of expansion wave artillery [J]. CHINESE JOURNAL OF HIGH PRESSURE PHYSICS, 2009,23(6):433-440.
[16] Wang G, Cheng C, Zhang X, et al. Numerical simulation and analysis of muzzle flow during a rarefaction wave gun firing[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(12): 1902-1913.
[17] 陈杨,廖振强,刘国鑫,等. 两种拉瓦尔喷管减后坐结构效能对比分析[J]. 弹道学报,2008,20(4):88-91.
CHEN Yang, LIAO Zhenqiang, LIU Guoxin, et al. Performance Comparison of Two Recoilless Structures With Laval Nozzles [J]. Journal of Ballistics, 2008,20(4):88-91.
[18] Cheng C, Wang C, Zhang X. A prediction method for the performance of a low-recoil gun with front nozzle[J]. Defence Technology, 2019, 15(5): 703-712.
[19] 张帆,廖振强,刘国鑫,等. 喷孔前置式膨胀波枪炮发射过程数值仿真与分析[J]. 系统仿真学报,2008,20(18):5032-5034,5039.
ZHANG Fan, LIAO Zhenqiang, LIU Guoxin, et al. Numerical Simulation and Analysis on Front Orifice Rarefaction Wave Gun Propulsion [J]. Journal of System Simulation, 2008,20(18):5032-5034,5039.
[20] 韩如锋,袁永强,唐蓬博,等. 某低后坐自动炮动力学特性与优化研究[J]. 火炮发射与控制学报,2023,44(4):1-6.
HAN Rufeng, YUAN Yongqiang, TANG Pengbo, et al. Research on Dynamic Characteristics and Optimization of a Low Recoil Gun [J]. JOURNAL OF GUN LAUNCH & CONTROL ,2023,44(4):1-6.
[21] 常人九,薛晓春,余永刚. 计及动态冲击挤进过程的埋头弹弹药内弹道特性[J]. 兵工学报,2022,43(9):2388-2398. 
CHANG Renjiu, XUE Xiaochun, YU Yonggang. Study on Interior Ballistic Characteristics of Cased Telescoped Ammunition with Dynamic Impact Engraving Considered [J]. ACTA ARMAMENTARII, 2022,43(9):2388-2398.
[22] 郭则庆,王杨,姜孝海,等. 小口径武器膛口流场可视化实验[J]. 实验流体力学,2012,26(2):46-50.
GU0 Zeqing, WANG Yang, JIANG Haixiao, et al. Visual experiment on the muzzle flow field of the small caliber gun. [J]. Journal of Experiments in Fluid Mechanics, ,2012,26(2):46-50.

PDF(2500 KB)

Accesses

Citation

Detail

段落导航
相关文章

/