爆破荷载作用下煤岩本构模型参数特性研究

张 鑫1, 2, 刘泽功1, 2, 常 帅2, 陈响升2, 薛勇林2, 朱家亮2, 宋 鑫2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 263-277.

PDF(4491 KB)
PDF(4491 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 263-277.
冲击与爆炸

爆破荷载作用下煤岩本构模型参数特性研究

  • 张 鑫1, 2, 刘泽功*1, 2, 常 帅2, 陈响升2, 薛勇林2, 朱家亮2, 宋 鑫2
作者信息 +

Parametric characteristics of coal rock constitutive model under blasting load

  • ZHANG Xin1,2, LIU Zegong*1,2, CHANG Shuai2, CHEN Xiangsheng2, XUE Yonglin2 ZHU Jialiang2, SONG Xin2
Author information +
文章历史 +

摘要

为探究RHT(Riedel-Hiermaier-Thoma)本构模型和HJC(Holomquist-Johnson-Cook)本构模型在深部煤岩体爆破数值模拟中的适用性,首先基于淮北矿区深部原煤对RHT和HJC两种本构模型参数进行了标定;然后通过单孔爆破室内试验和数值模拟对所标定参数进行了有效性验证,并添加最大拉伸应力和最大剪切应力的复合失效准则对HJC模型进行改进;最后基于两种本构模型对不同地应力状态下单孔爆破进行数值模拟,探讨两种本构模型在模拟损伤区范围和破裂形态方面的适用性。单孔爆破数值模拟结果表明,无地应力加载状态下RHT本构模型和改进的HJC本构模型都能够较好描述压碎区的形成和裂纹区裂纹演化;不同地应力加载状态下RHT和HJC两种本构模型数值模拟结果均能体现出地应力对裂纹扩展具有制约作用。当围压为0 MPa,理论裂隙区半径为RHT模型的1.11倍,为HJC模型的1.20倍,两者差异较小。当围压增加到30 MPa,理论值裂隙区半径为RHT模型的1.31倍,为HJC模型的4.13倍,两者相差较大,基于RHT模型的数值模拟结果与理论值更接近。根据研究结果,RHT模型和改进的HJC本构模型均适用于无地应力状态下爆破问题的数值模拟,对于高地应力状态下爆破RHT本构模型应成为首选。

Abstract

In order to investigate the performance of Riedel-Hiermaier-Thoma(RHT) and Holomquist-Johnson-Cook(HJC) constitutive models in the numerical simulation of blasting in deep coal and rock bodies, the parameters of RHT and HJC constitutive models were calibrated based on the deep coal in Huaibei mining area; then the validity of the calibrated parameters was verified through the indoor tests and numerical simulations of single-hole blasting, and the composite failure criterion of maximal tensile stress and maximal shear stress was added to improve the HJC model. Finally, the numerical simulation of single-hole blasting under different ground stresses is carried out based on the two constitutive models to explore the applicability of the two constitutive models in simulating the range of damage zones and rupture patterns. The numerical simulation results of single-hole blasting show that both the RHT model and the improved HJC model are able to describe the formation of the crushed zone and crack evolution under no ground stress loading condition; the numerical simulation results of the RHT and HJC models under different ground stress loading conditions show that the ground stress has a restraining effect on the crack expansion, and the quantitative indexes of the expansion range of the crack zone show that the RHT model is closer to the theoretical value than the HJC model. The RHT model is closer to the theoretical calculation value than the HJC model. According to the results of the study, the RHT model and the improved HJC constitutive model are both suitable for the numerical simulation of the blasting problem in the absence of ground stress, and the RHT constitutive model should be the first choice for the blasting in the high ground stress condition.

关键词

煤岩体 / 爆破 / 本构模型 / 裂纹扩展 / 裂隙区范围

Key words

coal / blasting / constitutive model / crack propagation / fracture zone

引用本文

导出引用
张 鑫1, 2, 刘泽功1, 2, 常 帅2, 陈响升2, 薛勇林2, 朱家亮2, 宋 鑫2. 爆破荷载作用下煤岩本构模型参数特性研究[J]. 振动与冲击, 2025, 44(5): 263-277
ZHANG Xin1, 2, LIU Zegong1, 2, CHANG Shuai2, CHEN Xiangsheng2, XUE Yonglin2 ZHU Jialiang2, SONG Xin2. Parametric characteristics of coal rock constitutive model under blasting load[J]. Journal of Vibration and Shock, 2025, 44(5): 263-277

参考文献

[1] 袁亮, 王恩元, 马衍坤, 等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报, 2023, 48(5): 1825-1845.
YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825−1845.
[2] 蔡峰, 刘泽功, 张朝举, 等. 高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J]. 煤炭学报, 2007(5): 499-503.
CAI Feng,LIU Zegong,ZHANG Chaoju,et al. Numerical simulation of improving permeability by deep-hole presplitting explosion in loose-soft and low permeability coal seam [J]. Journal of China Coal Society,2007(5): 499-503..
[3] 黄永辉, 孙博, 张智宇, 等. 岩石RHT本构的爆破碎裂判定方法优化及验证[J]. 北京理工大学学报, 2023, 43(6): 565-574.
HUANG Yonghui, SUN Bo, ZHANG Zhiyu, QIAN Zhengqian, WANG Jun, LI Hongchao. Optimization and Verification of Blasting Fragmentation Judgment Method for RHT Constitutive Model of Rock[J]. Transactions of Beijing institute of Technology, 2023, 43(6): 565-574.
[4] 宋帅, 杜闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用[J]. 爆炸与冲击, 2023, 43(5): 57-69.
SONG Shuai, DU Chuang, LI Yanyan. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete[J]. Explosion And Shock Waves, 2023, 43(5): 57-69.
[5] Xie L X, Lu W B, Zhang Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J]. TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2017, 66: 19-33.
[6] 高魁. 松软煤层底板爆破致裂增透模拟试验研究及应用[J]. 煤炭科学技术,xxxx,xx(x): x−xx. doi: 10.12438/cst.2023-0914.
GAO Kui. Research of simulation experiment on permeability enhancement by blasting in soft coal seam floor and its application [J]. Coal Science and Technology,xxxx,xx(x): x−xx. doi: 10.12438/cst.2023-0914
[7] Wang Z, Wang H, Wang J, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks[J]. COMPUTERS AND GEOTECHNICS, 2021, 135: 104172.
[8] 李向上, 郑俊杰, 宋彦琦, 等. 高瓦斯低透气性煤层聚能爆破增透机制[J]. 爆炸与冲击, 2023, 43(5): 158-170.
LI Xiangshang, ZHENG Junjie, SONG Yanqi, GUO Deyong, MA Hongfa, WANG Jiamin. On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam[J]. Explosion And Shock Waves, 2023, 43(5): 158-170.
[9] 王宇涛. 基于RHT本构的岩体爆破破碎模型研究[D]. 北京:中国矿业大学(北京), 2015.
WANG Yutao. The study of the broken model for rock mass blasting based on RHT constitutive equations [M]. China University of Mining & Technology, Beijing,2015.
[10] 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 2017, 49(2): 1-16.
XIE Heping. Research Framework and Anticipated Results of Deep Rock Mechanics and Mining Theory[J]. Advanced Engineering Sciences, 2017, 49(02): 1−16. 
[11] 郭德勇, 张超, 朱同功. 地应力对煤层深孔聚能爆破致裂增透的作用[J]. 工程科学学报, 2022, 44(11): 1832-1843.
GUO Deyong, ZHANG Chao, ZHU Tong-gong. Effect of in-situ stress on the cracking and permeability enhancement in coal seams by deep-hole cumulative blasting[J]. Chinese Journal of Engineering, 2022, 44(11): 1832-1843. 
[12] Yi C, Johansson D, Greberg J. Effects of in-situ stresses on the fracturing of rock by blasting[J]. COMPUTERS AND GEOTECHNICS, 2018, 104: 321-330.
[13] 陈思羽, 王青成, 杨立云. 类岩石材料动态本构模型研究进展[J]. 科技导报, 2022, 40(8): 115-126.
CHEN Siyu, WANG Qingcheng, YANG Liyun. Review of dynamic constitutive models of rock-like materials[J]. Science & Technology Review, 2022, 40(8): 115-126.
[14] Riedel W, Thoma K, Hiermaier S, et al. Penetration of Reinforced Concrete by BETA-B-500 Numerical Analysis using a New Macroscopic Concrete Model for Hydrocodes[C]//9th International Symposium, Interaction of the Effects of Munitions with Structures. 1999.
[15] 韩颖, 赵乾甫, 张飞燕. 基于Hoek-Brown准则的型煤与原煤煤样及煤体力学特性对比研究[J]. 河南理工大学学报(自然科学版), 2018, 37(1): 23-30.
HAN YING, ZHAO Qianfu, ZHANG Feiyan. Comparative research on mechanical properties of coal specimens and coal mass based on Hoek-Brown criterion [J]. Journal of Henan Polytechnic University(Natural Science), 2018, 37(1): 23-30.
[16] 付义胜. 常规三轴强度准则对试验数据的拟合和评价[D]. 河南理工大学, 2014.
Fu Yisheng. Fitting and evaluation of the conventional triaxial strength criteria with test data [D]. Henan Polytechnic University,2014.
[17] 苏承东, 付义胜. 红砂岩三轴压缩变形与强度特征的试验研究[J]. 岩石力学与工程学报, 2014, 33(S1): 3164-3169.
Su Chengdong, Fu Yisheng. Experimental study of triaxial compression deformation and strength characteristics of red sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3164-3169.
[18] 俞茂宏. 双剪理论及其应用[M]. 北京: 科学出版社, 1998.
[19] Riedel W, Kawai N, Kondo K. Numerical assessment for impact strength measurements in concrete materials[J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2009, 36(2): 283-293.
[20] BORRVALL T, SWEDEN L, RIEDEL W. The RHT concrete model in LS-DYNA[C]//Proceedings of the 8th European LS-DYNA Conference. Strasbourg, France, 2011.
[21] 解北京. 煤冲击破坏动力学特性及磁场变化特征实验研究[D]. 中国矿业大学(北京), 2013.
JIE BeiJing. Experimental research on characteristics of coal impact damage dynamics and magnetic field [M]. China University of Mining & Technology, Beijing,2013.
[22] Holmquist T J, Johnson G R. A computational constitutive model for concrete subjective to large strains, high strain rates, and high pressures.[C]//In: The 14th International Symposium on Ballistics. American Defense Prepareness Association: 591-600.
[23] Wang F, Tu S, Yuan Y, et al. Deep-hole pre-split blasting mechanism and its application for controlled roof caving in shallow depth seams[J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2013, 64: 112-121.
[24] Zhao J-J, Zhang Y, Ranjith P G. Numerical modelling of blast-induced fractures in coal masses under high in-situ stresses[J]. ENGINEERING FRACTURE MECHANICS, 2020, 225: 106749.
[25] 张鑫, 刘泽功, 张健玉, 等. 高瓦斯低渗煤层控制孔与定向控制爆破复合作用增透试验研究[J]. 岩石力学与工程学报, 2023, 42(8): 2018-2027.
ZHANG Xin, LIU Zegong, ZHANG Jianyu, et al. Study on the propagation law of cracking and permeability enhancement caused by blasting in deep high-gas coal seams [J]. Coal Science and Technology,xxxx,xx(x): x−xx. doi: 10.12438/cst.2023-1622.
[26] 戴俊. 岩石动力学特性与爆破理论[M]. 冶金工业出版社, 2002.
[27] 刘健, 刘泽功, 高魁, 等. 深孔爆破在综放开采坚硬顶煤预先弱化和瓦斯抽采中的应用[J]. 岩石力学与工程学报, 2014, 33(S1): 3361-3367.
Liu Jian, LIU Zegong, Gao Kui, et al. Experimental study on permeability enhancement by combined action of control hole and directional control blasting in high gas and low permeability coal seam[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3361-3367.
[28] 戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算[J]. 辽宁工程技术大学学报(自然科学版), 2001(2): 144-147.
Dai Jun. Calculation of Radii of the Broken and Cracked Areas in Rock by a Long Charge Explosion [J]. Journal of Liaoning Technical University(Natural Science), 2001(2): 144-147.
[29] 来兴平, 崔峰, 曹建涛, 等. 特厚煤体爆破致裂机制及分区破坏的数值模拟[J]. 煤炭学报, 2014, 39(8): 1642-1649.
LAI Xingping,CUI Feng,CAO Jiantao,et al. Extra thick coal blasting mechanism and numerical simulation of partition failure [J]. Journal of China Coal Society,2014, 39(8): 1642-1649.
[30] Hallquist J. LS-DYNA Keyword User’s Manual, Version 971[M]. Livermore Software  Technology Corporation, 2007.
[31] 中国兵器工业总公司部标准. WJ2470-1997小量火药、炸药及其制品危险性建筑设计安全规范[S]. 1998.
Department of China National Ordnance Industry Corporation. WJ 2470-1997 Safety code for design of dangerous buildings with small amount of propellants[S], explosives and their products. 1998.
[32] Xiao W, Andrae M, Gebbeken N. Air blast TNT equivalence concept for blast-resistant design[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 185: 105871.
[33] Durda D D, Campo Bagatin A, Aleman R A, et al. The shapes of fragments from catastrophic disruption events: Effects of target shape and impact speed[J]. PLANETARY AND SPACE SCIENCE, 2015, 107: 77-83.
[34] 张鑫, 刘泽功, 张健玉, 等. 深部高瓦斯煤层爆破致裂增透裂纹扩展规律研究[J]. 煤炭科学技术,xxxx,xx(x): x−xx. doi: 10.12438/cst.2023-1622.
ZHANG Xin, LIU Zegong, ZHANG Jianyu, et al. Study on the propagation law of cracking and permeability enhancement caused by blasting in deep high-gas coal seams [J]. Coal Science and Technology,xxxx,xx(x): x−xx. doi: 10.12438/cst.2023-1622.
[35] Li X, Zhu Z, Wang M, et al. Numerical study on the behavior of blasting in deep rock masses[J]. TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2021, 113: 103968.
[36] Zhu F, Liu Z, Huang A-C. The shaped blasting experimental study on damage and crack evolution of high stress coal seam[J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2023, 83: 105030.
[37] Brandy B. Rock mechanics: for underground mining[M]. Berlin: Springer, 2004.
[38] Yang J, Liu K, Li X, et al. Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress[J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2020, 27(10): 3149-3162.
[39] Li X, Liu K, Sha Y, et al. Numerical investigation on rock fragmentation under decoupled charge blasting[J]. COMPUTERS AND GEOTECHNICS, 2023, 157: 105312.
[40] 田浩帆, 雷振, 包太, 等. 初始地应力作用下岩石爆破裂纹扩展研究[J]. 有色金属工程, 2022, 12(3): 138-146+159.
Tian Haofan, Lei Zhen, Bao Tai, et al. Review of dynamic constitutive models of rock-like materials[J]. Nonferrous Metals, 2022, 12(3): 138-146+159.

PDF(4491 KB)

Accesses

Citation

Detail

段落导航
相关文章

/