一种基于一维卷积自编码器的条件分布域适应方法

刘士亚 1, 梁文生 1, 何俊 1, 陈志文 2, 戴磊3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 323-330.

PDF(2338 KB)
PDF(2338 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 323-330.
故障诊断分析

一种基于一维卷积自编码器的条件分布域适应方法

  • 刘士亚 1 , 梁文生 1,何俊*1,陈志文 2,戴磊3
作者信息 +

A conditional distribution domain adaptation method based on a 1D convolutional self-encoder

  • LIU Shiya1, LIANG Wensheng1, HE Jun*1, CHEN Zhiwen2, DAI Lei3
Author information +
文章历史 +

摘要

针对基于域间分布差异度量的域适应方法忽视两个域中类与类之间条件分布差异对域间分布差异度量的影响,而导致知识迁移精度低的问题。以跨旋转机械的滚动轴承为研究对象,提出一种基于一维卷积自编码器的条件分布域适应的故障诊断方法。该方法通过构建一种基于阈值局部子域相关性对齐的域间差异度量准则(T-LCORAL),并将该准则嵌入到自编码器的输出层,以有效引导模型进行特征提取。然后,利用伪标签将源域和目标域划分成多个子域进行域内细粒度对齐,并通过可靠性阈值对伪标签进行筛选,以提高域中类与类之间边界分布的可判别性。最后,采用三个轴承数据集进行跨机械的轴承故障迁移诊断实验,结果表明所提方法是具有良好的性能。

Abstract

Most of existing domain adaptation-based scenarios used to estimate inter-domain distribution discrepancy can ignore the impact aroused by conditional distribution discrepancy between classes in two domains on the measurement of inter-domain distribution discrepancy, which can make the accuracy of knowledge transfer drop dramatically. A fault diagnosis method based on one-dimensional convolutional auto-encoder and conditional distribution domain adaptation is proposed for rolling bearings across rotating machinery. An inter-domain dissimilarity criterion (T-LCORAL) based on threshold local subdomain correlation alignment is constructed, which is embedded into the output layer of the autoencoder to guide the model for feature extraction effectively. Then, pseudo labels are employed to divide the source and target domains into multiple subdomains for fine-grained alignment within the domain, Moreover, the pseudo labels are screened by reliability thresholds to improve the discriminability of the boundary distribution between classes in the domain. Finally, three bearing datasets were used for cross mechanical bearing fault transfer diagnosis experiments, and the results showed that the proposed method can achieved better performance. 

关键词

域适应 / 条件分布 / 自编码 / 故障诊断

Key words

domain adaptation / conditional distribution / self-encoder / fault diagnosis

引用本文

导出引用
刘士亚 1, 梁文生 1, 何俊 1, 陈志文 2, 戴磊3. 一种基于一维卷积自编码器的条件分布域适应方法[J]. 振动与冲击, 2025, 44(5): 323-330
LIU Shiya1, LIANG Wensheng1, HE Jun1, CHEN Zhiwen2, DAI Lei3. A conditional distribution domain adaptation method based on a 1D convolutional self-encoder[J]. Journal of Vibration and Shock, 2025, 44(5): 323-330

参考文献

[1] 赵春晖, 胡赟昀, 郑嘉乐, 陈军豪. 数据驱动的燃煤发电装备运行工况监控——现状与展望[J]. 自动化学报, 2022, 48(11): 2611-2633.
ZHAO Chun-hui, HU Yun-yun, ZHENG Jia-le, CHEN Jun-hao. Data-driven operating monitoring for coal-fired power generation equipment: the state of the art and challenge[J].  Acta automatica sinica, 2022, 48(11): 2611-2633.
[2] 王军辉, 雷文平, 刘华杰, 魏李军, 韩东洋. 基于深度动态域适应的轴承故障诊断研究[J]. 振动与冲击, 2023, 42(14): 245-250.
WANG Jun-hui, LEI Wen-ping, LIU Hua-jie, WEI Li-jun, HAN Dong-yang, Bearing fault diagnosis based on deep dynamic domain adaptation[J]. Journal of vibration and shock, 2023, 42(14): 245-250.
[3] Sai Ma, Fulei Chu. Ensemble deep learning-based fault diagnosis of rotor bearing systems[J]. Computers in Industry, 2019, 105(143-152.
[4] Duy-Tang Hoang, Hee-Jun Kang. A survey on Deep Learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335(327-335.
[5] Zhenghong Wu, Hongkai Jiang, Shaowei Liu, Ruixin Wang. A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis[J]. Isa Transactions, 2022, 129(505-524.
[6] Ping Xie, Xingmin Zhang, Guoqian Jiang, Jian Cui, Qun He. Investigation of deep transfer learning for cross-turbine diagnosis of wind turbine faults[J]. Measurement Science and Technology, 2023, 34(4): 
[7] Meidi Sun, Hui Wang, Ping Liu, Shoudao Huang, Pan Wang, Jinhao Meng. Stack Autoencoder Transfer Learning Algorithm for Bearing Fault Diagnosis Based on Class Separation and Domain Fusion[J]. Ieee Transactions on Industrial Electronics, 2022, 69(3): 3047-3058.
[8] 高学金, 张震华, 高慧慧, 齐咏生. 基于多源域自适应残差网络的滚动轴承故障诊断[J]. 振动与冲击, 2024, 43(07): 290-299.
GAO Xue-jing, ZHANG Zhen-hua, GAO Hui-hui, QI Yong-sheng. Rolling bearing fault diagnosis based on multi-source domain adaptive residual network[J]. Journal of vibration and shock, 2024, 43(07): 290-299.
[9] 贾峰, 李世豪, 沈建军, 马军星, 李乃鹏. 采用深度迁移学习与自适应加权的滚动轴承故障诊断[J]. 西安交通大学学报, 2022, 56(08): 1-10.
JIA Feng, LI Shi-hao, SHEN Jian-jun, MA Jun-xing, LI Nai-peng. Fault diagnosis of rolling bearings using deep transfer learning and adaptive weighting[J]. Journal of Xi'an jiaotong university, 2022, 56(08): 1-10.
[10] Quan Qian, Yi Qin, Jun Luo, Yi Wang, Fei Wu. Deep discriminative transfer learning network for cross-machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2023, 186(
[11] Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, Bernhard Schölkopf. Kernel measures of conditional dependence[J]. Advances in neural information processing systems, 2007, 20(
[12] Hongliang Yan, Zhetao Li, Qilong Wang, Peihua Li, Yong Xu, Wangmeng Zuo. Weighted and class-specific maximum mean discrepancy for unsupervised domain adaptation[J]. IEEE Transactions on Multimedia, 2019, 22(9): 2420-2433.
[13] Y. C. Zhu, F. Z. Zhuang, J. D. Wang, G. L. Ke, J. W. Chen, J. Bian, H. Xiong, Q. He. Deep Subdomain Adaptation Network for Image Classification[J]. IEEE transactions on neural networks and learning systems, 2021, 32(4): 1713-1722.
[14] Ruixin Zhang, Yu Gu. A transfer learning framework with a one-dimensional deep subdomain adaptation network for bearing fault diagnosis under different working conditions[J]. Sensors, 2022, 22(4): 1624.
[15] A. A. Amin, M. S. Iqbal, M. H. Shahbaz. Development of Intelligent Fault-Tolerant Control Systems with Machine Learning, Deep Learning, and Transfer Learning Algorithms: A Review[J]. Expert Systems with Applications, 2024, 238(
[16] 周华锋, 程培源, 邵思羽, 赵玉伟. 基于子域自适应对抗网络的轴承故障诊断[J]. 振动与冲击, 2022, 41(11): 9.
ZHOU Hua-jian, CHENG Pei-yuan, SHAO Si-yu, ZHAO Yu-wei. Bearing fault diagnosis based on subdomain adaptive confrontation network[J], 2022, 41(11): 9.
[17] 陶文彬, 钱育蓉, 张伊扬, 马恒志, 冷洪勇, 马梦楠. 基于自编码器的深度聚类算法综述[J]. 计算机工程与应用, 2022, 58(18): 10.
TAO Wen-bin, QIAN Yu-rong, ZHANG Yi-yang, MA Heng-zhi, LENG Hong-yong, MA Meng-nan. Survey of Deep Clustering Algorithm Based on Autoencoder [J]. Computer Engineering and Applications, 2022, 58(18): 10.
[18] Wade A Smith, Robert B Randall. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64(100-131.
[19] Hai Qiu, Jay Lee, Jing Lin, Gang Yu. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of sound and vibration, 2006, 289(4-5): 1066-1090.
[20] Jingfei Zhang, Qinghua Zhang, Xiao He, Guoxi Sun, Donghua Zhou. Compound-fault diagnosis of rotating machinery: A fused imbalance learning method[J]. IEEE Transactions on Control Systems Technology, 2020, 29(4): 1462-1474.
[21] W. Zhang, G. L. Peng, C. H. Li, Y. H. Chen, Z. J. Zhang. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals[J]. Sensors, 2017, 17(2): 
[22] Baochen Sun, Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation[A]. Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14[C]. Springer, Year: 443-450.
[23] Liang Guo, Yaguo Lei, Saibo Xing, Tao Yan, Naipeng Li. Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics, 2018, 66(9): 7316-7325.
[24] Q. Qian, Y. Qin, Y. Wang, F. Q. Liu. A new deep transfer learning network based on convolutional auto-encoder for mechanical fault diagnosis[J]. Measurement, 2021, 178.

PDF(2338 KB)

Accesses

Citation

Detail

段落导航
相关文章

/