典型钢轨波磨病害下高速轮轨瞬态滚动接触及磨损行为分析

丁旺才1, 2, 马帅1, 靳忠渊3, 李得洋1, 吴少培1, 李国芳1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 67-79.

PDF(7132 KB)
PDF(7132 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 67-79.
振动与机械科学

典型钢轨波磨病害下高速轮轨瞬态滚动接触及磨损行为分析

  • 丁旺才1,2,马帅1,靳忠渊3,李得洋1,吴少培1,李国芳*1
作者信息 +

Analysis of transient rolling contact and wear behavior for high-speed wheel-rail under typical rail corrugation diseases

  • DING Wangcai1,2, MA Shuai1, JIN Zhongyuan3, LI Deyang1, WU Shaopei1, LI Guofang*1
Author information +
文章历史 +

摘要

以典型钢轨波磨病害为研究对象,构建了考虑轨下结构及轮轨弹塑性接触的三维轮轨瞬态滚动接触有限元模型,采用基于有限元模型的三维磨损分布计算方法,研究了匀速和牵引状态下轮轨接触特性及钢轨磨损行为的差异,以及牵引状态下不同病害参数钢轨波磨对轮轨接触特性及磨损的影响规律。结果表明:牵引状态下轮轨纵向力受固有刚度不平顺影响更显著,波磨对相对滑移的影响与纵向力有关,且需在固有刚度不平顺影响基础上叠加,叠加效果与波磨波长和谷深有关。在波磨谷深限值内,波磨波长较短或谷深较大时,纵向力会出现与波磨几何相似的振型,导致相对滑移分布与波磨几何相关,接触压力变化进一步影响磨损深度,使波峰附近磨损增加,波谷附近磨损减少,波磨进一步发展。由于磨损增量相位与波磨几何相位差较小,钢轨波磨有减缓趋势,波磨在较大波长及谷深下减缓较快。研究结论以期为高速轮轨波磨区段钢轨维护策略提供理论参考。

Abstract

Taking the typical rail corrugation disease as the research object, a three-dimensional wheel-rail transient rolling contact finite element model considering the under-rail structure and wheel-rail elastic-plastic contact was constructed. The three-dimensional wear distribution calculation method based on the finite element model was used to study the wheel-rail contact characteristics and rail wear behavior under uniform speed and traction. The difference, as well as the influence of rail corrugation with different disease parameters on wheel-rail contact characteristics and wear under traction. The results show that the longitudinal force of wheel-rail under traction state is more significantly affected by the inherent stiffness irregularity. The influence of corrugation on relative slip is related to the longitudinal force, and it needs to be superimposed on the influence of inherent stiffness irregularity. The superposition effect is related to the wavelength and valley depth of corrugation. In the valley depth limit of corrugation, when the corrugation wavelength is short or the valley depth is large, the longitudinal force will have a vibration mode similar to the corrugation geometry, resulting in the relative slip distribution related to the corrugation geometry. The change of contact pressure further affects the wear depth, so that the wear near the crest increases, the wear near the trough decreases, and the corrugation further develops. Due to the small phase difference between the wear increment phase and the geometric phase of the corrugation, the rail corrugation tends to slow down, and the corrugation slows down faster under larger wavelength and valley depth. The research conclusions are expected to provide a theoretical reference for the rail maintenance strategy in high-speed wheel-rail corrugation section.

关键词

高速铁路 / 钢轨波磨 / 瞬态动力学 / 有限元分析 / 磨损分析 / 轮轨接触特性

Key words

High speed railway / rail corrugation / transient dynamics / finite element analysis / wear analysis / wheel-rail contact characteristics

引用本文

导出引用
丁旺才1, 2, 马帅1, 靳忠渊3, 李得洋1, 吴少培1, 李国芳1. 典型钢轨波磨病害下高速轮轨瞬态滚动接触及磨损行为分析[J]. 振动与冲击, 2025, 44(5): 67-79
DING Wangcai1, 2, MA Shuai1, JIN Zhongyuan3, LI Deyang1, WU Shaopei1, LI Guofang1. Analysis of transient rolling contact and wear behavior for high-speed wheel-rail under typical rail corrugation diseases[J]. Journal of Vibration and Shock, 2025, 44(5): 67-79

参考文献

[1] 刘国云, 曾京, 张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143
LIU Guoyun1, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6): 137-143
[2] 康熙, 陈光雄, 等. 轮轨滑动对高速铁路扣件弹条振动特性的影响[J]. 振动与冲击, 2023, 42(18): 63-70. 
KANG xi, CHEN Guangxiong. et al. Effect of wheel-rail slip on the vibration characteristics of fastener clips in high-speed railways[J]. Journal of Vibration and Shock, 2023, 42(18): 63-70.
[3] KALKER J J. Three-dimensional elastic bodies in rolling contact[M]. Kluwer Academis Publishers, Dordrecht, 1990.
[4] KALKER J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13.
[5] JIN Xuesong, WEN Zefeng, Wang Kaiyun. Effect of track irregularities on initiation and evolution of rail corrugation[J]. Journal of Sound and Vibration, 2005, 285(1-2): 121-148.
[6] LI Xia, YANG Tao, ZHANG Jian, et al. Rail wear on the curve of a heavy haul line—Numerical simulations and comparison with field measurements[J]. Wear, 2016, 366: 131-138.
[7] KNOTHE K, GROSS-THEBING A. Derivation of frequency dependent creep coefficients based on an elastic half-space model[J]. Vehicle System Dynamics, 1986, 15(3): 133-153.
[8] ZHAO Xin , WEN Zefeng , WANG Kaiyun , etal. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University Science A, 2014, 15(12): 946-963.
[9] ZHAO Xin, HUANG Shuangchao, YIN Shsn, et al. Influence of unilateral low adhesion on transient wheel-rail rolling contact and wheel damages[J]. Wear. 2023: 205053.
[10] DENG Xiangyun, NI Yi-qing, LIU Xiubo, Numerical analysis of transient wheel-rail rolling/slipping contact behaviors[J]. Journal of Tribology-Transactions of the ASME, 2022, Vol. 144(No.10): 101503.
[11] 常崇义. 有限元轮轨滚动接触理论及其应用研究[D]. 北京: 中国铁道科学研究院, 2010.
CHANG Chongyi. A study on wheel/rail rolling contact theory based on finite element method and its applying[D]. Beijing: China Academy of Railway Sciences, 2010.
[12] 温泽峰. 钢轨波浪形磨损研究[D]. 成都: 西南交通大学, 2006.
WEN Zefeng. Study on rail corrugation[D]. Chengdu: Southwest Jiaotong University, 2006.
[13] 赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18): 1-7.
ZHAO Xin, WEN Zefeng, WANG Hengyu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7.
[14] 于淼, 王卫东, 刘金朝. 钢轨波磨区段高速轮轨瞬态滚动接触高频动态特性[J]. 中国铁道科学, 2018, 39(05): 58-66.
YU Miao, WANG Weidong, LIU Jinzhao. High-frequency dynamic characteristics of high-Speed wheel-rail transient rolling contact in rail corrugation section[J]. China Railway Science, 2018, 39(05): 58-66.
[15] 牛留斌, 胡晓依, 杨飞, 等. 基于轮轨垂向力的波磨状态估算方法[J]. 交通运输工程学报, 2023, 23(03): 88-102.
NIU Liubin, HU Xiaoyi, YANG Fei, et al. Estimation method of rail corrugation state based on wheel-rail vertical force[J]. Journal of Traffic and Transportation Engineering, 2023, 23(03): 88-102.
[16] 常崇义, 王成国 ,金鹰 . 基于三维动态有限元模型的轮轨磨耗数值分析[J]. 中国铁道科学, 2008(04): 89-95.
CHANG Chongyi, WANG Chengguo, JIN Ying. Numerical analysis of wheel-rail wear based on three-dimensional dynamic finite element model[J]. China Railway Science, 2008(04): 89-95.
[17] ZHAO Xin, ZHANG Peng, WEN Zefeng. On the coupling of the vertical, lateral and longitudinal wheel-rail interactions at high frequencies and the resulting irregular wear[J]. Wear. 2019: 317-326.
[18] 康熙, 陈光雄, 杨普淼, 等. 高速列车车轮偏心磨耗的形成机理与发展规律[J]. 交通运输工程学报, 2022, 22(01): 168-176.
KANG xi, CHEN Guangxiong, YANG Pumiao. et al. Formation mechanism and progression pattern of eccentric wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(01): 168-176.
[19] 王志强, 雷震宇. 基于瞬态接触特性的科隆蛋扣件轨道波磨形成机理[J]. 清华大学学报(自然科学版), 2023, 63(11): 1844-1855.
WANG Zhiqiang, LEI Zhenyu . Mechanism of corrugation on the track with Cologne egg fasteners based on transient contact characteristics[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1844-1855.
[20] WU Bowen, PAN Jiabao, HU Wei. et al. Investigation on the causes of rail corrugation in high-speed railways based on the wheel-rail transient rolling contact model and wear model[J]. Vehicle System Dynamics. 2024: 1-21.
[21] 王志强, 雷震宇. 基于瞬态接触的地铁直线轨道波磨特性分析[J]. 中南大学学报(自然科学版), 2023, 54(11): 4338−4348.
WANG Zhiqiang, LEI Zhenyu. Characteristics analysis of track corrugation on metro straight line based on transient contact[J]. Journal of Central South University(Science and Technology), 2023, 54(11): 4338−4348.
[22] 汪梦寒,顾晓菡,王安斌. 科隆蛋扣件直线路段钢轨波磨形成机理研究 [J/OL]. 铁道科学与工程学报, 1-12[2024-07-06].
WANG Menghan, GU Xiaohan, WANG Anbin. Study on the formation mechanism of rail corrugation in the straight line section of Cologne egg fasteners[J/OL]. Journal of Railway Science and Engineering, 1-12 [2024-07-06].
[23] 于淼. 高速铁路轨道-车辆系统高频瞬态仿真及波磨机理研究[D]. 中国铁道科学研究院, 2019.
YU Miao. Transient simulation for high-speed track/vehicle system and study on rail corrugation [D]. China academy of railway sciences, 2019.
[24] 李谷, 张志超, 祖宏林,等. 高速铁路典型轨道病害下轮轨力响应特性试验研究[J]. 中国铁道科学, 2019, 40(6): 30-36.
LI Gu, ZHANG Zhichao, ZU Honglin, et al. Experimental study on the wheel-rail force response characteristics under typical track defects of high speed railway[J]. China Railway Science, 2019, 40(6): 30-36.
[25] ARCHARD J F. Contact and Rubbing of Flat Surfaces[J]. Journal of Applied Physics, 1953, 56(24): 981-988.
[26] 谷永磊, 赵国堂, 金学松, 等. 高速铁路钢轨波磨对车辆—轨道动态响应的影响. 中国铁道科学, 2015, 36(4): 27-31.
GU Yonglei, ZHAO Guotang, JIN Xuesong, et al. The influence of high-speed railway rail corrugation on the vehicle-track dynamic response. China Railway Science, 2015, 36(4): 27-31.
[27] PENG B, IWNICKI S, SHACKLETON P, et al. General conditions for railway wheel polygonal wear to evolve[J]. Vehicle System Dynamics, 2021, 59(4): 568-587.

PDF(7132 KB)

Accesses

Citation

Detail

段落导航
相关文章

/