脂润滑小模数齿轮副时变啮合刚度计算方法

胡波1, 2, 谭清杰1, 董建雄1, 2, 肖泽亮1, 2, 尹来容1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 80-87.

PDF(2314 KB)
PDF(2314 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 80-87.
振动与机械科学

脂润滑小模数齿轮副时变啮合刚度计算方法

  • 胡波*1,2,谭清杰1,董建雄1,2,肖泽亮1,2,尹来容1,2
作者信息 +

Calculation method for time-varying meshing stiffness of grease lubricated small module gear pairs

  • HU Bo*1,2, TAN Qingjie1, DONG Jianxiong1.2, XIAO Zeliang1,2, YIN Lairong1,2
Author information +
文章历史 +

摘要

时变啮合刚度是齿轮动力学设计与分析中至关重要的参数;而充斥啮合齿面的润滑剂会改变齿轮接触特性,影响时变啮合刚度。同时,小模数齿轮副的中心距极小,其啮合角、重合度与啮合刚度等对中心距误差非常敏感。针对脂润滑与中心距误差对小模数齿轮接触的影响,本文基于弹流脂润滑理论,推导了油膜承载刚度的计算公式;结合势能法,构建了脂润滑齿轮的时变啮合刚度计算模型,研究了转速、粘度对脂润滑齿轮啮合刚度的影响规律。研究结果表明:脂润滑小模数齿轮的二次压力峰与膜厚紧缩现象明显,其位置随着载荷的增加向出口偏移;充斥啮合齿面之间的润滑油膜通过增大接触面积,从而强化小模数齿轮的时变啮合刚度;相反,中心距误差的增加会弱化齿轮副的时变啮合刚度;油脂粘度可以增加油膜对齿轮副啮合刚度的强化作用,但齿轮转速的上升会弱化脂润滑齿轮的啮合刚度。

Abstract

Time-varying mesh stiffness is a crucial parameter in gear dynamics design and analysis. The lubricant filling the meshing tooth surface will change the contact characteristics of the gear pair, thereby affecting the time-varying mesh stiffness. The center distance of the small module gear pair is very small, and the angle of engagement, contact ratio and mesh stiffness are very sensitive to the center distance error. In light of the influence of the grease lubrication and center distance error on the contact characteristics of small module gears, the formula for calculating the oil film bearing stiffness was deduced in this study based on the elastohydrodynamic lubrication theory. Combining the potential energy method, a time-varying mesh stiffness calculation model for grease-lubricated gear pair was constructed to investigate the effects of the speed, viscosity and center distance error on the time-varying mesh stiffness. The research findings reveal that the secondary pressure peak and film thickness contraction phenomenon are evident in grease-lubricated small module gears, with the position of the peak shifting towards the exit with increasing load. The lubricating oil film filling the meshing tooth surfaces increases the contact area between meshing tooth surfaces, thereby enhancing the time-varying mesh stiffness of small module gear pair. On the contrary, the increase of center distance error will weaken the time-varying meshing stiffness of the gear pair. Oil viscosity enhances the strengthening effect of the oil film on the mesh stiffness of gear pairs with grease lubrication, but the increase of the gear speed weakens the mesh stiffness.

关键词

小模数齿轮 / 脂润滑 / 啮合刚度 / 中心距误差 / 势能法

Key words

Small modulus gears / Grease lubrication / Mesh stiffness / Center distance error / Potential energy method.

引用本文

导出引用
胡波1, 2, 谭清杰1, 董建雄1, 2, 肖泽亮1, 2, 尹来容1, 2. 脂润滑小模数齿轮副时变啮合刚度计算方法[J]. 振动与冲击, 2025, 44(5): 80-87
HU Bo1, 2, TAN Qingjie1, DONG Jianxiong1.2, XIAO Zeliang1, 2, YIN Lairong1, 2. Calculation method for time-varying meshing stiffness of grease lubricated small module gear pairs[J]. Journal of Vibration and Shock, 2025, 44(5): 80-87

参考文献

[1] 刘怀举, 张博宇, 朱才朝, 等. 齿轮接触疲劳理论研究进展[J]. 机械工程学报, 2022, 58(03): 95-120.
LIU Huaiju, ZHANG Boyu, ZHU Caichao, et al. State of Art of Gear Contact Fatigue Theories[J]. Journal of Mechanical Engineering, 2022, 58(03): 95-120.
[2] TUPLIN W A. Gear tooth stresses at high speed[J]. Proceedings of the Institution of Mechanical Engineers, 1950, 16:162-167.
[3] WEBER C, BANASCHEK K. Formänderung und Profilrücknahme bei Gerad-und Schrägverzahnten Antriebstechnik[M]. Braunschweig, 1953.
[4] TIAN X, ZUO M J, FYFE K R. Analysis of the Vibration Response of a Gearbox With Gear Tooth Faults[C]. ASME International Mechanical Engineering Congress & Exposition.Anaheim,CA:ASME, 2004, (47063): 785-793.
[5] SAINSOT P, VELEX P, DUVERGER O. Contribution of Gear Body to Tooth Deflections—A New Bidimensional Analytical Formula[J]. Journal of Mechanical Design, 2004, 126(4) :748-752.
[6] CHAARI F, FAKHFAKH T, HADDAR M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[J]. European Journal of Mechanics - A/Solids, 2009, 28(3) :461-468.
[7] MOHAMMED O D, RANTATALO M, AIDANPää J-O. Improving mesh stiffness calculation of cracked gears for the purpose of vibration-based fault analysis[J]. Engineering Failure Analysis, 2013, 34:235-251.
[8] CUI L, LIU T, HUANG J, et al. Improvement on meshing stiffness algorithms of gear with peeling[J]. Symmetry, 2019, 11(5): 609.
[9] HU B, ZHOU C, WANG H, et al. Nonlinear tribo-dynamic model and experimental verification of a spur gear drive under loss-of-lubrication condition[J]. Mechanical Systems and Signal Processing, 2021, 153:107509.
[10] 朱丽莎, 王奇斌, 栾晓刚, 等.基于切片耦合理论的斜齿轮时变啮合刚度分析[J]. 振动与冲击, 2022, 10: 66-71+80.
ZHU Lisha, WANG Qibin, LUAN Xiaogang, et al. Time varying meshing stiffness analysis on helical gears based on the coupled slice theory[J]. Journal of Vibration and Shock, 2022, 10: 66-71+80.
[11] ZHOU C, XING M, HU B. A mesh stiffness model with the asperity contact for spur gear in mixed elastohydrodynamic lubrication[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(10): 466.
[12] 孟宗, 李佳松, 潘作舟, 等. 裂纹故障对轮齿时变啮合刚度的影响分析[J]. 中国机械工程, 2022, 33(16):1897-1905+1911.
MENG Zong, LI Jiasong, PAN Zuozhou, et al. Influences of Crack Faults on TVMS of Gear Tooth[J]. China Mechanical Engineering, 2022, 33(16):1897-1905+1911.
[13] 林腾蛟, 陈梦寒, 杨金, 等. 齿廓修形人字齿轮副时变啮合刚度计算方法[J]. 振动与冲击, 2021, 09: 175-183+194.
LIN Tengjiao, CHEN Menghan, YANG Jin, et al. Calculation method of time-varying meshing stiffness of herringbone gear pair with tooth profile modification [J]. Journal of Vibration and Shock, 2021, 09: 175-183+194.
[14] PEI J, HAN X, TAO Y. An improved stiffness model for line contact elastohydrodynamic lubrication and its application in gear pairs[J]. Industrial Lubrication and Tribology, 2020, 72(5):703-708.
[15] GU Y, CHEN R, QIU G, et al. A time‐varying meshing stiffness model for gears with mixed elastohydrodynamic lubrication based on load‐sharing[J]. Quality and Reliability Engineering International, 2024.
[16] 胡波, 安锦运, 尹来容, 等. 小模数齿轮传动的时变啮合刚度计算方法[J]. 中国机械工程, 2024, 35(01): 74-82.
HU Bo, AN Jinyun, YIN Lairong, et al. Calculation Method of Time-varying Meshing Stiffness of Small Module Gear Transmission [J]. China Mechanical Engineering, 2024, 35(01): 74-82.
[17] LI S. Effects of misalignment error, tooth modifications and transmitted torque on tooth engagements of a pair of spur gears[J]. Mechanism and Machine Theory, 2015, 83:125-136.
[18] HU Z, TANG J, ZHONG J, et al. Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system[J]. Mechanical Systems and Signal Processing, 2016, 76–77:294-318.
[19] LIU Z, WANG H, LU F, et al. A New Fast Calculating Method for Meshing Stiffness of Faulty Gears Based on Loaded Tooth Contact Analysis[J]. Processes, 2023, 11(7).
[20] 陈亮, 樊智敏, 尹兆明, 等. 基于分形齿面粗糙度的双渐开线齿轮时变啮合刚度研究[J].摩擦学学报,2023, 43(04) :358-367.
CHEN Liang, FAN Zhimin, YIN Zhaoming, et al. Fractal Model of Double Involute Gears Time-Varying Meshing Stiffness Considering Friction Factors [J]. Tribology,2023, 43(04): 358-367.
[21] RAGHUWANSHI N K, PAREY A. Experimental measurement of gear mesh stiffness of cracked spur gear by strain gauge technique[J]. Measurement, 2016, 86:266-275.
[22] RAGHUWANSHI N K, PAREY A. Experimental measurement of mesh stiffness by laser displacement sensor technique[J]. Measurement, 2018, 128:63-70.
[23] RAGHUWANSHI N K, PAREY A. A New Technique of Gear Mesh Stiffness Measurement Using Experimental Modal Analysis[J]. Journal of Vibration and Acoustics, 2019, 141(2) :021018-021018-021013.

PDF(2314 KB)

112

Accesses

0

Citation

Detail

段落导航
相关文章

/