无叶片风力发电机及其风振特性研究

唐大伦1, 刘仰昭1, 戴靠山1, 施袁锋1, 蒲琼2, Del ChungMing Yang2, David Yáez3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 97-105.

PDF(4065 KB)
PDF(4065 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (5) : 97-105.
振动与机械科学

无叶片风力发电机及其风振特性研究

  • 唐大伦1,刘仰昭*1,戴靠山1,施袁锋1,蒲琼2,Del ChungMing Yang2,David Yáez3
作者信息 +

Bladeless wind turbine and its wind induced vibration characteristics

  • TANG Dalun1, LIU Yangzhao*1, DAI Kaoshan1, SHI Yuanfeng1, PU Qiong2, Del ChungMing Yang2, David Yáez3
Author information +
文章历史 +

摘要

为探究无叶片风力发电机的风振特性,本文以某3m高、额定功率100 W的无叶片风力发电机为研究对象开展研究。首先建立风机的有限元模型,计算获得固有模态信息,并预测其风致振动。随后,对此风机的足尺模型进行风洞试验。最后,将试验结果与理论预测结果进行对比,综合分析其风致振动规律。结果表明:风机顶端横风向位移随着风速的增大表现出先增大后减小的趋势,呈现出典型的涡振现象,因此在高风速环境下无需考虑刹车系统等安全措施;同时,在风速稳定的情况下,风机顶端的位移时程接近标准正弦曲线,表现出稳定的风致振动;此外,风机各个方向的气动特征也大致相同,具有较好的全风向适应性,无需依赖额外的偏航系统即可应对风向改变。

Abstract

In order to explore the wind vibration characteristics of bladeless wind turbines, a bladeless wind turbine with a height of 3 m and a rated power of 100 W was taken as the research object. Firstly, the finite element model of the wind turbine is established, the natural mode information is calculated, and the wind-induced vibration is predicted. Subsequently, a full-scale model of the turbine was tested in a wind tunnel. Finally, the experimental results are compared with the theoretical prediction results, and the wind-induced vibration law is comprehensively analyzed. The results show that the cross-wind displacement at the top of the fan increases first and then decreases with the increase of wind speed, showing a typical vortex phenomenon, so there is no need to consider safety measures such as braking system in high wind speed environment. At the same time, when the wind speed is stable, the displacement time history of the top of the fan is close to the standard sinusoidal curve, showing stable wind-induced vibration. In addition, the aerodynamic characteristics of the wind turbine in all directions are also about the same, with good adaptability to all wind directions, and there is no need to rely on an additional yaw system to cope with wind direction changes.

关键词

无叶片风力发电机;涡激共振;风洞试验;有限元计算  /

Key words

Bladeless wind turbines / Vortex resonance / Wind tunnel testing / Finite element calculations

引用本文

导出引用
唐大伦1, 刘仰昭1, 戴靠山1, 施袁锋1, 蒲琼2, Del ChungMing Yang2, David Yáez3. 无叶片风力发电机及其风振特性研究[J]. 振动与冲击, 2025, 44(5): 97-105
TANG Dalun1, LIU Yangzhao1, DAI Kaoshan1, SHI Yuanfeng1, PU Qiong2, Del ChungMing Yang2, David Yáez3. Bladeless wind turbine and its wind induced vibration characteristics[J]. Journal of Vibration and Shock, 2025, 44(5): 97-105

参考文献

[1] 李全生,张凯.我国能源绿色开发利用路径研究[J].中国工程科学,2021,23(01):101-111. 
Li Quansheng,Zhang Kai.The Path for Green Development and Utilization of Energy in China[J].Strategic Study of CAE,2021,23(01):101-111.
[2]   金红光,隋军.变革性能源利用技术——分布式能源系统[J].分布式能源,2016,1(1):1-5.
JIN Hongguang,SUI Jun.Transformational Technology Innovation——Distributed Energy System[J].Distributed Energy,2016,1(1):1-5.
[3] 王长贵.开发利用新能源和可再生能源的重大意义[J].太阳能,2000,(04):6-7.
[4]  Huang D ,Zhou S ,Han Q , et al.Response analysis of the nonlinear vibration energy harvester with an uncertain parameter[J].Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,2020,234(2):393-407.
[5] 张旭梅,张秀洲.服务化趋势下的风电设备后市场服务模式与策略研究[J].重庆大学学报(社会科学版),2014,20(06):64-69.
[6] ZHANG Xumei,ZHANG Xiuzhou.Research on the Service Mode and Strategies of Wind Power Equipment Aftermarket under the Trend of Servitization[J].Journal of Chongqing University(Social Science Edition),2014,20(06):64-69.
[6] A. Mane, M. Kharade, P. Sonkambale Shubham Tapase, S.S. Kudte,“Design & analysis of vortex bladeless turbine with Gyro E-Generator” (2017) 1–2 http://ijirse.com/wp-content/upload/2017/03/GS250ijirse.pd.
[7] Chaudhari C C, Shriram M A, Unhale S G, et al. Fabrication of vortex bladeless windmill power generation model[J]. Int J Sci Technol Eng, 2017, 3(12): 52-56.
[7] 黄浩博,曹迪,周志勇,等.基于涡激振动的压电风能收集器研究进展[J].力学学报,2023,55(10):2132-2145.
[8] Huang Haobo,Cao Di,Zhou Zhiyong,et al.Research progress of piezoelectric wind energy harvesters based on vortex-induced vibration[J].Chinese Journal of Theoretical and Applied Mechanics,2023,55(10):2132-2145.
[9]  王丁丁,赵振宙,刘一格,等.大型风力机塔筒与叶片涡激共振机理研究[J].太阳能学报,2023,44(10):306-312.DOI:10.19912/j.0254-0096.tynxb.2022-0844. 
Wang Dingding,Zhao Zhenzhou,Liu Yige,et al.
Study on vortex induced resonance mechanism between tower and blade of large wind turbine[J].Acta Energiae Solaris Sinica,2023,44(10):306-312.
[10]  杜小振,P.A.Mbango-Ngoma,常恒,等.流致涡激振动压电发电风能采集技术模拟研究[J].振动与冲击,2022,41(23):168-174+200.DOI:10.13465/j.cnki.jvs.2022.
23.020.
DU Xiaozhen;Mbango-Ngoma;P.A.CHANG Heng,et al.Wind energy collection technology simulation with flow-induced VIV piezoelectric film for power generation[J].Journal of Vibration and Shock,2022,41(23):168-174+200.
[11] Song R, Shan X, Lv F, et al. A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension[J]. Ceramics International, 2015, 41: S768-S773.
[12] Zhang L B, Dai H L, Abdelkefi A, et al. Improving the performance of aeroelastic energy harvesters by an interference cylinder[J]. Applied Physics Letters, 2017, 111(7).
[13]  Yáñez D J, SL V B. VIV resonant wind generators[J]. Vortex Bladeless SL, 2018.
[14] Sigil F ,V. U ,S. S .Design and Analysis of Vortex Bladeless Wind Turbine[J].Materials Today: Proceedings,2021,47(P
16):5584-5588.
[15] Rishabh O, Shubhankar B, Vishal S K. Bladeless Wind Power Generation[J]. International Journal of Science and Engineering Development Research, 2017, 2(4).
[16] Elsayed A M, Farghaly M B. Theoretical and numerical analysis of vortex bladeless wind turbines[J]. Wind Engineering, 2022, 46(5): 1408-1426.
[17] Gohate G, Bobde S, Khairkar A, et al. Study of vortex induced vibrations for harvesting energy[J]. International Journal for Innovative Research in Science & Technology, 2016, 2(11): 374-378.exciter[J].Energy Conversion and ManageMent,
2023,284
[18] Tandel R, Shah S, Tripathi S. A state-of-art review on Bladeless Wind Turbine[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 1950(1): 012058.
[19] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations[J]. Applied Energy, 2020, 267: 114902.   
[20] Tamura Y, Amano A. Mathematical model for vortex-induced oscillations of continuous systems with circular cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14(1-3): 431-442.
[21]  Tamura Y, Matsui G. Wake-oscillator model of vortex-induced oscillation of circular cylinder[M]//Wind Engineering. Pergamon, 1980: 1085-1094.
[22] 杨涵,刘仰昭,戴靠山等.高耸烟囱风致振动的TPIMS减振数值分析[J].振动与冲击,2022,41(09):290-298.DOI:10.13465/j.cnki.jvs.2022.09.037.
YANG Han;LIU Yangzhao;DAI Kaoshan,et al.Numerical analysis of TPIMS for reducing wind-induced vibration of high-rise chimney[J].Journal of Vibration and Shock,2022,41(09):290-298.
[23] Yannick J ,Berg E R ,Jason R H , et al.Influence of position and wind direction on the performance of a roof mounted vertical axis wind turbine[J].Journal of Wind Engineering Industrial Aerodynamics,2022,230 

PDF(4065 KB)

150

Accesses

0

Citation

Detail

段落导航
相关文章

/