含双耦合非线性振子的双梁系统动力学行为研究

李生1, 赵雨皓2, 杜敬涛3, 崔海健4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 1-12.

PDF(2500 KB)
PDF(2500 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 1-12.
振动理论与交叉研究

含双耦合非线性振子的双梁系统动力学行为研究

  • 李生1,赵雨皓*2,杜敬涛3,崔海健4
作者信息 +

Dynamic behaviors of a double-beam system with double-coupling nonlinear oscillators

  • LI Sheng1,ZHAO Yuhao*2,DU Jingtao3,CUI Haijian4
Author information +
文章历史 +

摘要

弹性梁系统作为一种基本工程单元,被广泛应用于建筑、航天航空、海洋工程等领域,控制弹性梁系统的振动水平具有重要工程意义。为揭示双耦合非线性振子(double coupling nonlinear oscillator, DCNO)在双梁系统振动控制中的潜在应用,建立了含 DCNO的双梁系统动力学行为预报分析模型,并采用拉格朗日法预报双梁系统的动力学行为。在确保数值结果正确的基础上,研究了 DCNO的典型工作模式,探讨了 DCNO参数对双梁系统动力学行为的影响规律。研究结果表明, DCNO的引入能够有效实现双梁系统各子结构的同步振动控制。一方面,当 DCNO处于多频线性/非线性振动控制模式时,双梁系统各子梁主共振区处的振动均得到了有效抑制,且多频非线性振动控制模式激发了双梁系统的复杂振动响应,使得弹性梁与DCNO之间出现振动能量时域单向传递现象;另一方面,根据振动控制的需求,DCNO的工作模式及振动控制效果可通过调控其核心控制参数实现,设定合适的DCNO核心控制参数有利于增强DCNO对双梁系统主共振区的振动控制效果。

Abstract

As one of the basic engineering units, elastic beam systems are widely used in various fields, including architecture, aerospace, ocean engineering, and others.It is of great engineering significance to control the vibration level of elastic beam systems.To reveal the potential application of double-coupling nonlinear oscillators(DCNO) in the vibration control of double-beam systems, a dynamic behavior prediction model of double-beam systems with DCNOs was established, where the Lagrange method was used to predict the dynamic behavior of the double-beam system.On the basis of ensuring the correctness of the numerical results, the typical operating mode of the DCNO was studied, and the influence of the DCNO parameters on the dynamic behavior of the double-beam system was discussed.The results show that the introduction of the DCNOs can effectively realize the synchronous vibration control of each substructure of the double-beam system.On the one hand, when the DCNO is in the multi-frequency linear/nonlinear vibration control mode, the vibration of each sub-beam in the main resonance region of the double-beam system is effectively suppressed.Additionally, the multi-frequency nonlinear vibration control mode excites the complicated vibration responses of the double-beam system, resulting in the unidirectional transmission of vibration energy in time domain between elastic beams and DCNOs.On the other hand, according to the vibration control requirements, the working mode and vibration control effect of DCNOs can be realized by adjusting its core control parameters.Setting appropriate core control parameters for DCNOs is conducive to enhancing the vibration control effect of the DCNOs on the main resonance region of the double-beam system.

关键词

双梁系统 / 非线性振子 / 非线性响应 / 振动控制

Key words

double-beam system / nonlinear oscillators / nonlinear response / vibration control

引用本文

导出引用
李生1, 赵雨皓2, 杜敬涛3, 崔海健4. 含双耦合非线性振子的双梁系统动力学行为研究[J]. 振动与冲击, 2025, 44(6): 1-12
LI Sheng1, ZHAO Yuhao2, DU Jingtao3, CUI Haijian4. Dynamic behaviors of a double-beam system with double-coupling nonlinear oscillators[J]. Journal of Vibration and Shock, 2025, 44(6): 1-12

参考文献

[1]肖伟,霍瑞东,李海超,等.改进傅里叶方法在梁结构振动特性分析中的应用[J].噪声与振动控制, 2019,39(1): 10-15.
XIAO Wei, HUO Ruidong, LI Haichao, et al.Application of improved Fourier series method in vibration analysis of beam structures[J].Noise and Vibration Control, 2019,39(1): 10-15.
[2]赵雨皓,杜敬涛,许得水.轴向载荷条件下弹性边界约束梁结构振动特性分析[J].振动与冲击, 2020,39(15): 109-117.
ZHAO Yuhao, DU Jingtao, XU Deshui.Vibration characteristics analysis for an axially loaded beam with elastic boundary restraints[J].Journal of Vibration and Shock, 2020,39(15): 109-117.
[3]李海虹,王昊,郭山国,等.任意边界条件下弹性梁耦合振动特性分析[J].振动与冲击, 2022,41(17): 48-54.
LI Haihong, WANG Hao, GUO Shanguo, et al.Coupled vibration characteristics analysis of elastic beam under arbitrary boundary conditions[J].Journal of Vibration and Shock, 2022,41(17): 48-54.
[4]叶茂,谭平,任珉,等.中间带弹性支承各种边界条件连续梁模态分析[J].工程力学, 2010,27(9): 80-85.
YE Mao, TAN Ping, REN Min, et al.Modal analysis of multi-span beams with intermediate flexible constraints and different boundary conditions[J].Engineering Mechanics, 2010,27(9): 80-85.
[5]鲍四元,周静.不同截面形状下弹性支撑多跨梁振动特性分析[J].中国舰船研究, 2020,15(1): 162-169.
BAO Siyuan, ZHOU Jing.Vibrational characteristics of a multi-span beam with elastic transverse supports of different shaped sections[J].Chinese Journal of Ship Research, 2020,15(1): 162-169.
[6]周海军,李玩幽,吕秉琳,等.弹性支撑及连接边界的多跨曲梁面内自由振动分析[J].哈尔滨工程大学学报, 2012,33(6): 696-701.
ZHOU Haijun, LI Wanyou, L Binglin, et al.In-plane free vibration analysis of multi-span curved beams with elastic support and connecting boundary conditions[J].Journal of Harbin Engineering University, 2012,33(6): 696-701.
[7]LI W L, BONILHA M W, XIAO J.Vibrations and power flows in a coupled beam system[J].Journal of Vibration and Acoustics, 2007,129(5): 616-622.
[8]李增,张志谊.含弹性连接和层间流体的双梁结构的耦合振动分析[J].振动与冲击, 2010,29(7): 189-192.
LI Zeng, ZHANG Zhiyi.Coupled vibration analysis of a double-beam structure with fluid and elastic connection inside[J].Journal of Vibration and Shock, 2010,29(7): 189-192.
[9]PAJAND M R, HOZHABROSSADATI S M.Free vibration analysis of a coupling beam system joined by a mass-spring device[J].Journal of Vibration and Control, 2016,22(13): 3004-3017.
[10]PAJAND M R, SANI A A, HOZHABROSSADATI S M.Analyzing free vibration of a double-beam joined by a three-degree-of-freedom system[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019,41: 211.
[11]鲍四元,周静,陆健炜.任意弹性边界的多段梁自由振动研究[J].应用数学与力学, 2020,41(9): 985-993.
BAO Siyuan, ZHOU Jing, LU Jianwei.Free vibration of multi-segment beams with arbitrary boundary conditions[J].Applied Mathematics and Mechanics, 2020,41(9): 985-993.
[12]赵翔,孟诗瑶.基于Green函数分析Euler-Bernoulli双曲梁系统的受迫振动[J].应用数学和力学, 2023,44(2): 168-177.
ZHAO Xiang, MENG Shiyao.Forced vibration analysis of Euler-Bernoulli double-beam systems by means of Green’s functions[J].Applied Mathematics and Mechanics, 2023,44(2): 168-177.
[13]韩保红,马英忱,段云龙.连续梁的动力吸振器参数研究[J].机械制造与自动化, 2012,41(4): 39-42.
HAN Baohong, MA Yingchen, DUAN Yunlong.Research on parameter for dynamic vibration absorber of continuous beam[J].Machine Building & Automation, 2012,41(4): 39-42.
[14]TURSUN M, EKINAT E.H 2 optimization of damped-vibration absorbers for suppressing vibrations in beams with constrained minimization[J].ASME Journal of Vibration and Acoustics, 2014,136(2): 021012.
[15]王现成,郭蓬勃,张益民,等.用吸振器消除框架梁横向振动的可行性[J].振动与冲击, 2015,34(14): 179-182.
WANG Xiancheng, GUO Pengbo, ZHANG Yimin, et al.Feasibility of absorbing the transverse vibration of a frame-beam induced by attached oscillating equipment by using a vibrational absorber[J].Journal of Vibration and Shock, 2015,34(14): 179-182.
[16]张也弛,孔宪仁,杨正贤,等.非线性吸振器的靶能量传递及参数设计[J].振动工程学报, 2011,24(2): 111-117.
ZHANG Yechi, KONG Xianren, YANG Zhengxian, et al.Targeted energy transfer and parameter design of a nonlinear vibration absorber[J].Journal of Vibration Engineering, 2011,24(2): 111-117.
[17]陆泽琦,杨铁军,陈立群,等.非线性动力吸振系统动力学分析和优化[J].振动工程学报, 2016,29(5): 765-771.
LU Zeqi, YANG Tiejun, CHEN Liqun, et al.Dynamical behavior and optimization of a nonlinear vibration absorber[J].Journal of Vibration Engineering, 2016,29(5): 765-771.
[18]DING H, CHEN L Q.Design, analysis, and applications of nonlinear energy sinks[J].Nonlinear Dynamics, 2020,100: 3061-3107.
[19]GEORGIADES F, VAKAKIS A F.Dynamics of a linear beam with an attached local nonlinear energy sink[J].Communications in Nonlinear Science and Numerical Simulation, 2007,12(5): 643-651.
[20]SAMANI F S, PELLICANO F.Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers[J].Journal of Sound and Vibration, 2009,325(4/5): 742-754.
[21]KANI M, KHADEM S E, PASHAEI M H, et al.Vibration control of a nonlinear beam with a nonlinear energy sink[J].Nonlinear Dynamics, 2016,83: 1-22.
[22]ZHANG Z, DING H, ZHANG Y W, et al.Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks[J].Acta Mechanica Sinica, 2021,37: 387-401.
[23]符翔,彭剑,童俊辉,等.基于非线性能量阱的弹性支承梁振动抑制[J].噪声与振动控制, 2021,41(6): 63-66.
FU Xiang, PENG Jian, TONG Junhui, et al.Vibration mitigation of elastically supported beams based on nonlinear energy sink[J].Noise and Vibration Control, 2021,41(6): 63-66.
[24]ZHAO Y H, GUO F H, SUN Y H, et al.Modeling and vibration analyzing of a double-beam system with a coupling nonlinear energy sink[J].Nonlinear Dynamics, 2024,112: 9043-9061.
[25]ZHANG Y W, ZHANG H, HOU S, et al.Vibration suppression of composite laminated plate with nonlinear energy sink[J].Acta Astronautica, 2016,123: 109-115.
[26]LI H Q, LI A, KONG X R.Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates[J].Nonlinear Dynamics, 2021,103: 1475-1497.
[27]PEIKKHOSH S P, DARDEL M, GHASEMI M H.Enhancing bandwidth of metamaterial plate with linear and nonlinear passive absorbers[J].International Journal of Non-Linear Mechanics, 2021,135: 103769.
[28]KUMAR R K, KUMAR A.NES-based multi-mode vibration absorber for a sandwich plate in thermal environment[J].Journal of Vibration Engineering & Technologies, 2024,12: 3701-3718.
[29]ZHAO Y H, XU D S.Dynamic analysis of a plate system coupled through several nonlinear spring-mass couplers[J].Thin-Walled Structures, 2024,196: 111490.
[30]ZHENG H T, MAO X Y, DING H, et al.Distributed control of a plate platform by NES-cells[J].Mechanical Systems and Signal Processing, 2024,209: 111128.

PDF(2500 KB)

Accesses

Citation

Detail

段落导航
相关文章

/