极高地应力条件下光面爆破围岩损伤规律研究

黄永辉1, 占宇飞1, 张洪波1, 李清林2, 阮迅3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 104-112.

PDF(2280 KB)
PDF(2280 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 104-112.
冲击与爆炸

极高地应力条件下光面爆破围岩损伤规律研究

  • 黄永辉1,占宇飞1,张洪波*1,李清林2,阮迅3
作者信息 +

Damage patterns of surrounding rock under high-stress conditions in smooth blasting

  • HUANG Yonghui1,ZHAN Yufei1,ZHANG Hongbo*1,LI Qinglin2,RUAN Xun3
Author information +
文章历史 +

摘要

针对深埋隧道开挖过程中存在极高地应力的情况,为研究地应力对光面爆破围岩损伤产生的影响,采用基于ANSYS/LS-DYNA软件的数值模拟方法,通过结构化网格-有限元-粒子流耦合算法(S-FEM-SPH)进行三维模拟。研究在双向等值地应力0Mpa~40Mpa条件下的光面爆破围岩损伤规律,研究结果表明:边帮和顶板处的围岩损伤度根据爆心距的变化分为水平直线阶段和反“S”型曲线下降阶段;在反“S”型曲线下降阶段,距离爆心距中间位置的围岩,损伤度随爆心距的下降速率大;地应力对边帮和顶板处的围岩损伤均有影响,但对边帮处围岩损伤的影响大于顶板处,当地应力大于20Mpa时影响更加明显;通过对比边帮和顶板处有效塑性应变和围岩损伤深度随地应力的变化规律,从而验证了围岩损伤深度随地应力增加呈现先减小后增大变化规律的正确性。

Abstract

In the process of deep tunnel excavation, where extremely high in-situ stress is present, a numerical simulation method based on ANSYS/LS-DYNA software was used to study the effect of in-situ stress on surrounding rock damage caused by smooth blasting. A 3D simulation was conducted using the Structured Mesh-Finite Element-Particle Flow Coupling Algorithm (S-FEM-SPH). The study investigates the damage patterns of surrounding rock under bi-directional equivalent in-situ stress conditions ranging from 0 MPa to 40 MPa. The results indicate that the damage to the surrounding rock at the sidewalls and roof can be categorized into two phases based on the change in the distance from the blast center: a horizontal linear phase and a descending phase characterized by an inverse "S" curve. In the descending phase of the inverse "S" curve, the surrounding rock at the middle distance from the blast center shows a greater rate of damage reduction as the distance decreases. In-situ stress affects the damage to the surrounding rock at both the sidewalls and the roof, with the impact on the sidewalls being more significant than that on the roof, especially when the in-situ stress exceeds 20 MPa. By comparing the changes in effective plastic strain and the depth of surrounding rock damage at the sidewalls and roof with varying in-situ stress, the study confirms the validity of the finding that the depth of surrounding rock damage decreases initially and then increases with the rise in in-situ stress.

关键词

数值模拟 / 光面爆破 / 极高地应力 / 围岩损伤 / S-FEM-SPH算法

Key words

Numerical Simulation / Smooth Blasting / Extremely High In-situ Stress / Surrounding Rock Damage / S-FEM-SPH Algorithm

引用本文

导出引用
黄永辉1, 占宇飞1, 张洪波1, 李清林2, 阮迅3. 极高地应力条件下光面爆破围岩损伤规律研究[J]. 振动与冲击, 2025, 44(6): 104-112
HUANG Yonghui1, ZHAN Yufei1, ZHANG Hongbo1, LI Qinglin2, RUAN Xun3. Damage patterns of surrounding rock under high-stress conditions in smooth blasting[J]. Journal of Vibration and Shock, 2025, 44(6): 104-112

参考文献

[1]Liu Z G, Cao A Y, Zhu G G, et al. Numerical simulation and engineering practice for optimal parameters of deep-hole blasting in sidewalls of roadway[J]. Arabian Journal for Science and Engineering,2017,42(9):3 809-3 818.
[2]刘志刚,曹安业,井广成.煤体卸压爆破参数正交试验优化设计研究[J].采矿与安全工程学报,2018,35(5):931-939.LIU Zhigang, CAO Anye, JING Guangcheng. Research on parameters optimization of stress relief blasting in coal roadway using orthogonal experiment[J].Journal of Mining & Safety Engineering,2018,35(5):931-939.
[3]杨建华,彭超,叶志伟,等.深部岩体爆破冲击波能量分布特征[J].兵工学报,2024,45(06):1735-1746.YANG Jianhua, PENG Chao, YE Zhiwei, et al.Energy Distribution of Shock Wave in Deep Rock Mass Blasting [J].Acta Armamentarii,2024,45(06):1735-1746.
[4]陶子豪,李祥龙,胡启文,等.掏槽爆破成腔空孔效应数值模拟研究与分析[J/OL].(2024-04-07)[2024-05-28].http://kns.cnki.net/kcms/detail/11.2176.TJ.20240527.0919.002.html.
[5]孙博,张智宇,王军,等.基于SPH粒子法的盲天井掏槽爆破数值模拟[J].地下空间与工程学报,2023,19(01):238-246.SUN Bo, ZHANG Zhiyu, WANG Jun, et al. Numerical Simulation of Cutting Blasting in Blind Shaft Based on SPH Particle Method[J].Chinese Journal of Underground Space and Engineering,2023,19(01):238-246.
[6]宋战平,张艺多,郭德赛,等.邻近既有建(构)筑物隧道爆破方案评价及优化方法[J].土木与环境工程学报(中英文),2023,45(01):14-24.SONG Zhanping, ZHANG Yiduo, GUO Desai, et al. Evaluation and optimization method of tunnel blasting scheme for adjacent existing structures[J].Journal of Civil and Environmental Engineering,2023,45(01):14-24.
[7]罗笙,严鹏,卢文波,等.深埋隧洞开挖爆破损伤数值模拟及损伤机制研究[J].岩石力学与工程学报,2021,40(S1):2760-2772.DOI:10.13722/j.cnki.jrme.2020.0817.LUO Sheng, YAN Peng, LU Wenbo, et al.Research on the simulation of blasting damage and its mechanism of deep tunnelexcavation[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2760-2772.DOI:10.13722/j.cnki.jrme.2020.0817.
[8]王浩,宗琦,汪海波,等.三轴压缩荷载下爆破损伤砂岩强度及变形特征试验研究[J/OL].岩石力学与工程学报:1-13[2024-04-11].https://doi.org/10.13722/j.cnki.jrme.2023.0908.WANG Hao, ZONG Qi, WANG Haibo, et al.Experimental study on strength and deformation characteristics of sandstone damaged by blasting under triaxial compressive loading[J/OL].Chinese Journal of Rock Mechanics and Engineering:1-13[2024-04-11].https://doi.org/10.13722/j.cnki.jrme.2023.0908.
[9]傅帅旸,李海波,吴迪,等.基于波速场反演的爆破损伤区范围界定研究[J/OL].岩石力学与工程学报:1-10[2024-04-11].https://doi.org/10.13722/j.cnki.jrme.2023.0932.FU Shuaiyang, LI Haibo, WU Di, et al.Study on the quantitative definition of blasting damage zone scope based on wave velocity field inversion[J/OL].Chinese Journal of Rock Mechanics and Engineering:1-10[2024-04-11].https://doi.org/10.13722/j.cnki.jrme.2023.0932.
[10]杨小林,张光然,褚怀保,等.超深竖井爆破掘进围岩损伤规律数值模拟研究[J/OL].爆破:1-12[2024-04-11].http://kns.cnki.net/kcms/detail/42.1164.tj.20240116.1632.006.html.YANG Xiaolin, ZHANG Guangran, CHU Huaibao, et al. Numerical Simulation Study on Damage Law of Surrounding Rock in Blasting Excavation of Ultra-deep Shaft[J/OL]. Blasting:1-12[2024-04-11].http://kns.cnki.net/kcms/detail/42.1164.tj.20240116.1632.006.html.
[11]刘翔宇,龚敏,杨仁树,等.隧道周边孔毫秒延时爆破围岩损伤数值分析研究[J].振动与冲击,2023,42(24):8-15.DOI:10.13465/j.cnki.jvs.2023.24.002.LIU Xiangyu, GONG Min, YANG Renshu, et al.Numerical analysis of surrounding rock damage caused by millisecond delay blasting of tunnel peripheral holes[J].Journal of Vibration and Shock,2023,42(24):8-15.DOI:10.13465/j.cnki.jvs.2023.24.002.
[12]马泗洲,刘科伟,杨家彩,等.初始应力下岩体爆破损伤特性及破裂机理[J].爆炸与冲击,2023,43(10):152-173.MA Sizhou, LIU Kewei, YANG Jiacai, et al.Blast-induced damage characteristics and fracture mechanism
of rock mass under initial stress[J]. Explosion and Shock Wave,2023,43(10):152-173.
[13]张硕彦,蒋楠,姚颖康,等.冻结砂岩冲击及爆破破岩能量耗散等效模型研究[J].岩石力学与工程学报,2024,43(05):1255-1269.DOI:10.13722/j.cnki.jrme.2023.0964.ZHANG Shuoyan, JIANG Nan, YAO Ying-Kang, et al.Equivalent modeling of energy dissipation in impact and rock blasting fragmentation of frozen sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(05):1255-1269.DOI:10.13722/j.cnki.jrme.2023.0964.
[14]周文海,胡才智,包娟,等.含节理岩体爆破过程中应力波传播与裂纹扩展的数值研究[J].力学学报,2022,54(09):2501-2512.ZHOU Wenhai, HU Caihui, BAO Juan, et al.NUMERICAL STUDY ON CRACK PROPAGATION AND STRESS WAVE PROPAGATION DURING BLASTING OF JOINTED ROCK MASS [J]. Chinese Journal of Theoretical and Applied Mechanic,2022,54(09):2501-2512.
[15]宋肖龙,高文学,季金铭,等.爆破振动对隧道围岩累积损伤效应的影响[J].振动与冲击,2020,39(24):54-62.DOI:10.13465/j.cnki.jvs.2020.24.008.SONG Xiaolong, GAO Wenxue, JI Jinming, et al.Influence of blasting vibration on cumulative damage of surrounding rock[J].Journal of Vibration and Shock,2020,39(24):54-62.DOI:10.13465/j.cnki.jvs.2020.24.008.
[16]中国生,敖丽萍,付玉华.循环爆破开挖下隧道围岩振动效应与损伤演化的模型实验[J].爆炸与冲击,2016,36(06):853-860.ZHONG Guosheng, AO Liping, FU Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion and Shock Waves,2016,36(06):853-860.
[17]丁可,张华磊,王连国,等.深部巷帮钻孔煤体损伤演化特征及钻孔围岩强度弱化机理研究[J/OL].(224-01-24)[2024-07-16].https://doi.org/10.13225/j.cnki.jccs.2023.1582.
[18] Zhu WC, Li ZH, Zhu L, et al. Numerical simulation on rockburst ofunderground opening triggered by dynamic disturbance[J]. Tunnelling and Underground Space Technology,2010,25(5):587-599.
[19] Liu, E. (2024). Study on Cumulative Damage Law of Surrounding Rock Induced by Blasting during Tunnel Construction. Journal of Physics: Conference Series, 2694(1). https://doi.org/10.1088/1742-6596/2694/1/012077 
[20]He, R. (2024). Research on the Cumulative Damage Law of Surrounding Rock under Cyclic Blasting Action. Journal of Physics: Conference Series, 2694(1). https://doi.org/10.1088/1742-6596/2694/1/012056
[21]Lei, G., Wu, D., & Shi, X. (2023). Damage Process and Fracture Mechanisms in the Rock Surrounding a Roadway Caused by Blasting-Induced Disturbance under High Stress. Shock and Vibration, 2023. https://doi.org/10.1155/2023/3548281
[22]Gao, C., Zhou, Z., Li, Z., Li, L., & Cheng, S. (2020). Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation. Tunnelling and Underground Space Technology, 97. https://doi.org/10.1016/j.tust.2020.103289
[23]潘强. 隧道光面爆破定向断裂与围岩损伤的机理研究[D]. 西南交通大学, 2020.PAB Qiang.STUDY ON MECHANISM OF DIRECTIONAL FRACTURE AND SURROUNDING ROCK DAMAGE IN TUNNEL SMOOTH BLASTING [D].Southwest Jiaotong University, 2020.
[24]秦庆词, 李克钢, 李明亮, 等. 非均质性岩石材料损伤失效准则及其失效行为研究[J]. 岩石力学与工程学报, 2021, 40(09): 1812-1825. QIN Qing-Ci, LI Ke-Gang, LI Ming-Liang, et al.Study on damage failure criterion and failure behavior of non-homogeneous rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(09): 1812-1825.
[25]黄永辉, 孙博, 张智宇, 等. 岩石RHT本构的爆破碎裂判定方法优化及验证[J]. 北京理工大学学报, 2023, 43(06): 565-574. HUANG Yonghui, SUN Bo, ZHANG Zhiyu, et al.Optimization and Verification of Blasting Fragmentation Judgment Method for RHT Constitutive Model of Rock[J]. Transactions of Beijing Institute of Technology, 2023, 43(06): 565-574.
[26]李洪超. 岩石RHT模型理论及主要参数确定方法研究[D]. 中国矿业大学(北京), 2016. LI Hongchao.The study of the rock RHT model and to determine the values of main parameters[D].China University of Mining & Technology, Beijing, 2016.

PDF(2280 KB)

Accesses

Citation

Detail

段落导航
相关文章

/