Damage characteristics of brittle metal projectiles under high-speed penetration
WANG Weizhan1,JING Tong2,LI Hongli3,MENG Fangao4,ZHENG Canjie4,ZHAO Taiyong*1
Author information+
1.Institute of Smart Weapons, North University of China, Taiyuan 030051, China;
2.Xi’an Institute of Modern Control Technology, Xi’an 710000, China;
3.Sichuan Provincial Corps Hospital CAPF, Leshan 614000, China;
4.Shandong Special Industry Group Co., Ltd., Zibo 255201, China
The study of kinetic energy projectiles' impact response characteristics against typical protective target plates has guiding significance for improving projectile power design. This article, through ballistic impact experiments, investigates the impact response characteristics of a 12.7mm kinetic energy projectile against three typical target plates: concrete (condition 1), armor steel (condition 2), and ceramic composite armor (condition 3). It establishes a calculation model for the fracture characteristics of brittle kinetic energy projectiles. The study finds that the tensile and shear waves generated by the impact load on the target plate are key factors influencing the change in fracture mode of the projectile core.When the impact load is relatively small, the projectile core initially exhibits elastic response characteristics (condition 1). As the impact load increases, the core shifts from tensile fracture to shear fracture, with the fracture surface transitioning from cleavage/dimple fracture (condition 2) to a predominantly cleavage fracture (condition 3). Additionally, the residual height of the projectile core gradually decreases. The theoretical model's calculated results for the kinetic energy projectile's fracture characteristics align well with the experimental results, demonstrating good applicability.
WANG Weizhan1, JING Tong2, LI Hongli3, MENG Fangao4, ZHENG Canjie4, ZHAO Taiyong1.
Damage characteristics of brittle metal projectiles under high-speed penetration[J]. Journal of Vibration and Shock, 2025, 44(6): 113-120
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Rakvag Kristian Gaarder, Børvik Tore , Westermann I , et al. An experimental study on the deformation and fracture modes of steel projectiles during impact[J]. Materials & Design, 2013, 51:242-256.
[2] Rakvag Kristian Gaarder, Børvik Tore, Hopperstad O S . A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests[J]. International Journal of Solids & Structures, 2014, 51(3-4):808-821.
[3] CHEN X W , CHEN G , ZHANG F J . Deformation and Failure Modes of Soft Steel Projectiles Impacting Harder Steel Targets at Increasing Velocity[J]. Experimental Mechanics, 2008, 48(3):335-354.
[4] Wenxue Y , Lanting Z , Xiaoqing M , et al. Plate perforation by deformable projectiles—A plastic wave theory[J]. International Journal of Impact Engineering, 1983, 1(4):393-412.
[5] DENG yunfei , ZHANG wei , YANG yongang , et al. The ballistic performance of metal plates subjected to impact by projectiles of different strength[J]. Materials & Design, 2014, 58:305-315.
[6] Paris V, Weiss A, Vizel A, et al. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates[J]. EPJ Web of Conferences, 2012, 26:04032.
[7] N. Kılıç ,BülentEkici. Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition[J]. Materials & Design, 2013, 44(none).
[8] 侯海量,朱锡,李伟,等.低速大质量球头弹冲击下薄板穿甲破坏机理数值分析[J].振动与冲击,2008,(01):40-45+181..
Hou H H, Zhu Xi, Li Wei, et al. Numerical Analysis of armor piercing failure Mechanism of Thin plate under impact of Low Speed and high mass ball head projectile [J]. Journal of Vibration and Shock,2008,(01):40-45+181.
[9] 易荣成,王坚茹,印立魁,等.陶瓷易碎弹对铝板的冲击特性研究[J].振动与冲击,2017,36(06):163-167.
Yi Rongcheng, Wang Jianru, Yin Likui, et al. Study on Impact Characteristics of brittle Ceramic Elastic on Aluminum Plate [J]. Journal of Vibration and Shock,2017,36(06):163-167.
[10] 魏刚.金属动能弹变形与断裂特性及其机理研究[D].哈尔滨工业大学,2014.
WEI gang. Study on deformation and fracture characteristics and mechanism of metal kinetic energy elasticity [D]. Harbin Institute of Technology, 2014.
[11] 薛建锋,沈培辉,王晓鸣,等.动能弹侵彻混凝土靶结构的等效研究[J].弹道学报,2015,27(04):69-72.
XUE jianfeng, SHEN peihui, WANG xiaoming, et al. Equivalent study on the penetration of kinetic energy projectile into concrete target structure [J]. Journal of Ballistics, 2015. 27 (04): 69-72.
[12] 李鸽,王坚茹,陈智刚,等.Tc动能弹侵彻陶瓷复合靶的仿真与试验研究[J].兵器材料科学与工程,2015,38(02):98-101.
LI ge, WANG jianru, CHEN zhigang, et al. Simulation and experimental study of Tc kinetic energy projectile penetrating ceramic composite target [J]. Weapons and Materials Science and Engineering, 2015 J 38 (02): 98-101.
[13] 李争,刘元雪,张裕.动能弹侵彻机理及其防护研究进展[J].兵器装备工程学报,2016,37(03):9-14.
LI zheng, LIU yuanxue, CHANG yu. Research progress on penetration mechanism and protection of kinetic energy projectile [J]. Journal of Ordnance and equipment Engineering, 2016 Journal 37 (03): 9-14.
[14] 李争,刘元雪,谭仪忠,等.钨合金动能弹超高速侵彻钢靶的破坏特性[J].后勤工程学院学报,2016,32(01):7-12.
LI zheng, LIU yuanxue, TAN yizhong, et al. Failure characteristics of tungsten alloy kinetic energy projectile penetrating steel target at hypervelocity [J]. Journal of the College of Logistics Engineering, 2016 .32 (01): 7-12.
[15] 刘志林.卵形头部动能弹高速侵彻钢筋混凝土机理研究[D].南京理工大学,2018.
LIU zhilin. Study on the mechanism of oval head kinetic energy projectile penetrating reinforced concrete at high speed [D]. Nanjing University of Science and Technology, 2018.
[16] 李小军, 王维占, 张银,等. 7.62mm穿甲子弹斜侵彻复合装甲仿真研究[J]. 装甲兵工程学院学报, 2018, 32(5):5.
LI xiaojun, WANG weizhan, ZHANG yin, et al. Simulation study on oblique penetration of 7.62mm armor-piercing projectile into composite armor [J]. Journal of Armored Corps Engineering College, 2018, 32 (5): 5.
[17] 李小军,李伟,王维占,等.TC动能弹斜侵彻复合装甲的数值模拟分析[J].兵器装备工程学报,2019,40(03):52-56.
LI xiaojun, LI wei, WANG weizhan, et al. Numerical simulation analysis of oblique penetration of TC kinetic energy projectile into composite armor [J]. Journal of Ordnance equipment Engineering, 20191.40 (03): 52-56.
[18] 王维占,赵太勇,冯顺山,等.12.7 mm动能弹斜侵彻复合装甲的数值模拟研究[J].爆炸与冲击,2019,39(12):81-90.
WANG weizhan, ZHAO taiyong, FENG shunshan, et al. Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor[J]. Explosion and shock, 2019. 39 (12): 81-90.
[19] Wang W , Zhao T , Meng F ,et al.Study of Impact Characteristics of ZrO[J].Materials (Basel, Switzerland), 2022, 15(4).
[20] 王维占,陈智刚,李小军,等.7. 62 mm子弹的两种典型破坏特性研究[J].兵工学报,2018,39(01):17-22.
WANG weizhan, CHEN zhigang, LI xiaojun, et al. Research on Two Typical Failure Modes of 7. 62 mm Bullet[J].Acta Armamentarii,2018,39(01):17-22.
[21] 赵太勇,王维占,赵军强,等.12.7 mm动能弹侵彻装甲钢板的结构响应特性研究[J].兵器装备工程学报,2020,41(10):146-149.
ZHAO taiyong, WANG weizhan, ZHAO junqiang, et al. Structural response characteristics of 12.7 mm kinetic energy projectile penetrating armored steel plate [J]. Journal of Ordnance equipment Engineering, 2020541 (10): 146-149.
[22] 宁建国,李钊,马天宝,等.动能弹高速侵彻钢筋混凝土靶时弹丸头部质量侵蚀微观机理[J].兵工学报,2021,42(09):1809-1818.
NING jianguo, LI zhao, MA tianbao, et al. Microscopic mechanism of mass erosion of projectile head when kinetic energy projectile penetrates reinforced concrete target at high speed [J]. Journal of military Industry, 2021, 42 (09): 1809-1818.
[23] 王晓东,余毅磊,蒋招绣等.不同撞击速度下穿燃弹侵彻陶瓷/铝合金复合靶板时弹芯破碎失效特性研究[J].爆炸与冲击,2022,42(02):83-91.
WANG xiaodong ,YU yilei , JIANG zhaoxiu, et al. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities [J].Explosion and shock, 2022,42(02):83-91.
[24] Ren Kai,Feng Shunshan,Chen Zhigang,Zhao Taiyong,Yin Likui,Fu Jianping. Study on the Penetration Performance of a 5.8 mm Ceramic Composite Projectile[J]. Materials,2021,14(4).
[25] Shockey D A , Marchand A H, Skaggs S R, et al. Failure phenomenology of con-fined ceramic targets and impacting rods [J]. International Journal of Im pact Engineering,1990, 9(3):263-275.
[26] 王礼立. 应力波基础-第二版 [M]. 2005.
Wang Lili Stress Wave Fundamentals - Second Edition [M] two thousand and five.