包含机器人-主轴系统耦合效应的铣削颤振稳定性分析

籍永建1, 2, 3, 韩启超3, 徐小康3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 13-27.

PDF(3142 KB)
PDF(3142 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 13-27.
振动理论与交叉研究

包含机器人-主轴系统耦合效应的铣削颤振稳定性分析

  • 籍永建*1,2,3,韩启超3,徐小康3
作者信息 +

Robotic milling chatter stability analysis considering the coupling effects between the robot and spindle system

  • JI Yongjian*1,2,3,HAN Qichao3,XU Xiaokang3
Author information +
文章历史 +

摘要

串联式工业机器人(以下简称机器人)刚度低,铣削加工过程极易由于工艺参数或机器人位姿选取不当产生颤振,颤振会降低工件表面质量、损坏机器人装备。针对机器人铣削加工颤振稳定性预测问题,通过构建机器人刚度模型的方式研究了机器人末端刚度随空间位姿的变化规律;阐明了主轴系统速度效应对刀尖动力学特性的影响规律,采用数据拟合的方法建立了主轴转速与刀尖固有频率之间的映射函数;构建了综合考虑机器人-主轴系统耦合效应的铣削动力学模型,采用锤击试验方法获得机器人铣削系统刀尖的阻尼比与模态质量,得到了包含不同影响因素的机器人铣削加工稳定性叶瓣图,揭示了机器人-主轴系统耦合作用下铣削颤振稳定性的动态变化规律,进行了试验验证。结果表明,与现有模型相比,考虑机器人-主轴系统耦合效应构建的稳定性叶瓣图更加符合实际铣削状态,可有效提升机器人铣削颤振的预测准确率。

Abstract

Due to the low stiffness of serial industrial robots, the robotic milling process is prone to chatter due to the improper selection of processing parameters or robot pose, which will reduce the surface quality of the workpiece and damage the robot equipment.In order to predict the chatter stability of robotic milling, the variation of robot end stiffness along with the spatial pose was studied by constructing the stiffness model of the robot.The dynamic model of the spindle system was constructed, then the influence of the speed effect on the dynamic characteristics of the tool tip was studied, and the mapping function between the spindle speed and the natural frequency of the tool tip was constructed by data fitting method.A robotic milling dynamic model considering the coupling effects between the robot and spindle system was proposed.The damping ratio and modal mass at the tool tip of the robotic milling system were obtained by hammer experiments, and the stability lobe diagram of the robotic milling system considering different factors was obtained.The variation law of milling chatter stability under the coupling effects of the robot-spindle system was revealed and verified by experiments.The results show that the stability lobe diagram obtained when considering the robot-spindle system coupling effects is more consistent with the actual milling state, which can effectively improve the prediction accuracy of robotic milling chatter stability.

关键词

机器人铣削 / 铣削动力学 / 颤振 / 耦合效应 / 稳定性分析

Key words

robotic milling / milling dynamics / chatter / coupling effect / stability analysis

引用本文

导出引用
籍永建1, 2, 3, 韩启超3, 徐小康3. 包含机器人-主轴系统耦合效应的铣削颤振稳定性分析[J]. 振动与冲击, 2025, 44(6): 13-27
JI Yongjian1, 2, 3, HAN Qichao3, XU Xiaokang3. Robotic milling chatter stability analysis considering the coupling effects between the robot and spindle system[J]. Journal of Vibration and Shock, 2025, 44(6): 13-27

参考文献

[1] GAO Ke, ZHOU Xiao-qin, WANG Rong-qi, et al. Robotic milling stability optimization based on robot functional redundancy [J]. Industrial Robot-The International Journal of Robotics Research and Application, 2023, 50(6): 1036-1047.
[2] SWAN R, PENNEY J, CORSON G, et al. Surface location error in robotic milling: Effect of combined low frequency and high frequency vibration modes [J]. CIRP Journal of Manufacturing Science and Technology, 2024, 49: 203-215.
[3] 陶波, 赵兴炜, 李汝鹏, 等. 机器人测量-操作-加工一体化技术研究及其应用 [J]. 中国机械工程, 2020, 31(1): 49-56.
TAO Bo, ZHAO Xing-wei, LI Ru-peng, et al. Research on robotic measurement-operation-machining technology and its application [J]. China Mechanical Engineering, 2020, 31(1): 49-56.
[4] LI Jing, LI Biao, SHEN Nan-yan,et al. Effect of the cutter path and the workpiece clamping position on the stability of the robotic milling system [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2919-2933.
[5] 刘辛军, 谢福贵, 杨迪, 等. 现代科技创新研究模式探讨 [J]. 机械工程学报, 2022, 58(11): 1-10.
LIU Xin-jun, XIE Fu-gui, YANG Di, et al. Discussion on research mode of advanced scientific and technological innovation [J]. Journal of Mechanical Engineering, 2022, 58(11): 1-10.
[6] WEN Jie, XIE Fug-ui, LIU Xin-jun, et al. Evolution and development trend prospect of metal milling equipment [J]. Chinese Journal of Mechanical Engineering, 2023, 36(1): 1-15.
[7] MENG Dan, SUN Hong-wei, XIONG Wei-wei, et al. Investigation on stability of robotic rotary ultrasonic edge milling component with poor rigidity [J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(5-6): 1579-1590.
[8] GIENKE O, PAN Zeng-xi, YUAN Lei, et al. Mode coupling chatter prediction and avoidance in robotic machining process [J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8): 2103-2116.
[9] VERL A, VALENTE A, MELKOTE S, et al. Robots in machining [J]. CIRP Annals-Manufacturing Technology, 2019, 68: 799-822.
[10] PAN Zeng-xi, ZHANG Hui, ZHU Zhen-qi, et al. Chatter analysis of robotic machining process [J]. Journal of Materials Processing Technology, 2006, 173(6): 301-309.
[11] WANG Lin-wei, LIU Yu, YU Ye, et al. Research on reliability of mode coupling chatter of orthopedic surgery robot [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(15): 8609-8620.
[12] 杨靖, 张小俭, 吴毅, 等. 基于刚度定向的工业机器人铣削姿态优化研究 [J]. 中国机械工程, 2022, 33(16): 1957-1964.
YANG Jing, ZHANG Xiao-jian, WU Yi, et al. Posture optimization based on stiffness orientation method for industrial robotic milling [J]. China Mechanical Engineering, 2022, 33(16): 1957-1964.
[13] 籍永建, 姚利诚. 机器人铣削加工颤振自适应识别方法研究 [J]. 中国机械工程, 2023, 34(18): 2165-2176.
JI Yong-jian, YAO Li-cheng. Research on self-adaptive chatter recognition method for robotic milling [J]. China Mechanical Engineering, 2023, 34(18): 2165-2176.
[14] CHEN Han, AHMADI K. Estimating pose-dependent FRF in machining robots using multibody dynamics and gaussian process regression [J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 1-13.
[15] LEI Yang, HOU Teng-yu, DING Ye. Prediction of the posture-dependent tool tip dynamics in robotic milling based on multi-task gaussian process regressions [J]. Robotics and Computer-Integrated Manufacturing, 2023, 81: 1-22.
[16] 叶松涛, 严思杰, 李文韬, 等. 面向机器人铣削加工的刀尖动态特性分析与稳定性预测 [J]. 机械工程学报, 2022, 58(17): 261-275.
YE Song-tao, YAN Si-jie, LI Wen-tao, et al. Analysis of tool tip dynamic characteristics and stability prediction for robotic milling tasks [J]. Journal of Mechanical Engineering, 2022, 58(17): 261-275.
[17] 梁志强, 石贵红, 杜宇超, 等. 考虑主轴-刀柄结合面特性的机器人铣削系统刀尖频响预测研究 [J]. 中国机械工程, 2023, 34(01): 2-9.
LIANG Zhi-qiang, SHI Gui-hong, DU Yuchao, et al. Research on tool tip frequency response prediction of robot milling systems considering characteristics of spindle-toolholder interface [J]. China Mechanical Engineering, 2023, 34(01): 2-9.
[18] 韩启超, 籍永建, 徐小康. 考虑机器人-主轴系统耦合作用的刀尖频响函数预测 [J]. 组合机床与自动化加工技术, 2024, 7: 57-63.
HAN Qi-chao, JI Yong-jian, XU Xiao-kang. Prediction of the tool tip frequency response function for robotic milling system by considering the influence of robot-spindle coupling effect [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024, 7: 57-63.
[19] CORDES M, HINTZE W, ALTINTAS Y. Chatter stability in robotic milling [J]. Robotics and Computer Integrated Manufacturing, 2019, 55: 11-18.
[20] DENG Kenan, GAO Dong, ZHAO Chang, et al. Prediction of in-process frequency response function and chatter stability considering pose and feedrate in robotic milling [J]. Robotics and Computer-Integrated Manufacturing, 2023, 82: 1-17.
[21] WANG, Lin-wei, LIU Yu, YU Ye, et al. Optimization of redundant degree of freedom in robotic milling considering chatter stability [J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(11-12): 8379-8394.
[22] TUNC LT, STODDART D. Tool path pattern and feed direction selection in robotic milling for increased chatter-free material removal rate [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2907-2918.
[23] HAJDU D, BORGIOLI F, MICHIELS W, et al. Robust stability of milling operations based on pseudospectral approach [J]. International Journal of Machine Tools and Manufacture, 2020,149: 103516
[24] 籍永建, 王西彬, 刘志兵, 等. 包含刀具-工件多重交互与速度效应的铣削颤振稳定性分析 [J]. 振动与冲击, 2021, 40 (17): 14-24.
JI Yong-jian, WANG xi-bin, LIU Zhi-bing, et al. Stability analysis of milling chatter with tool-workpiece multiple interactions and velocity effects [J]. Journal of Vibration and Shock, 2021, 40 (17): 14-24.
[25] JI Yong-jian, WANG Xi-bin, LIU Zhi-bing, et al. Milling stability prediction with simultaneously considering the multiple factors coupling effects-regenerative effect, mode coupling, and process damping [J]. The International Journal of Advanced Manufacturing Technology, 2018, 97 (5-8): 2509-2527.
[26] 陈玉山. 6R型工业机器人关节刚度辨识与实验研究[D]. 武汉, 华中科技大学, 2011.
[27] JI Yong-jian, WANG Li-yong, SONG Yue, et al. Investigation of robotic milling chatter stability prediction under different cutter orientations by an updated full-discretization method [J]. Journal of Sound and Vibration, 2022, 536: 117150.
[28] ZHANG Xiao-jian, XIONG Cai-Hua, DING Ye, et al. Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect [J]. International Journal of Machine Tools & Manufacture, 2012, 53: 127-140.

PDF(3142 KB)

Accesses

Citation

Detail

段落导航
相关文章

/