为研究近岸水下钻孔爆破能量波传播规律,评估地震波、水击波协同作用下水库大坝的毁伤效应及地震波对库岸基坑的毁伤效应,以桂林市第二水源工程-引水工程取水口水下钻孔爆破工程为背景,采用全耦合拉格朗日-欧拉算法开展近岸水下钻孔爆破数值模拟研究,分析爆破能量波传播形态变化及衰减规律、水库大坝及库岸基坑动力响应特征。研究结果表明:1)现场测试水击波峰值压力随距离比例药量(Q1/3/R)的衰减特征、大坝振动速度时程曲线及峰值振动速度变化规律与数值模拟的结果具有较高的吻合性,且现场测试和数值模拟得到的水击波峰值压力衰减特征均与Cole经验公式有较高的拟合性,验证了水下钻孔爆破数值模拟模型的可靠性。2)基于水击波在水库库水、地震波在水库库底岩体中传播衰减特征的直观分析结果,将爆破能量波传播过程划分为三个阶段:爆炸阶段、扩散阶段及衰减阶段;爆破能量波传播引起介质振动速度v=0.1cm/s的地震波、水击波的影响范围依次为270m、206.28m,均未传播至水库大坝坝脚。3)水击波峰值压力随爆心距、深度增加衰减显著,基于爆破相似类比法建立了同时考虑爆心距与水下深度的双因素水击波峰值压力经验计算公式,可用于可靠预测水域中任意位置的水击波峰值压力。4)爆破能量波在水库大坝中传播引起芯墙与坝体产生明显的动力响应,坝体迎爆面底部区域振动响应较为显著且坝脚区域产生损伤;坝体迎爆面坝底监测点峰值振动速度仅为0.17cm/s,小于规范规定限值2.5cm/s,初步判断水库大坝处于安全稳定状态;坝体迎爆面坝脚区域最大损伤比仅为25%,为确保大坝绝对安全,需要考虑对水库大坝采取适当的隔振及防护措施。5)爆破地震波在库岸岩体中传播,引起库岸基坑迎爆面、基坑坑底及坑侧、基坑背爆面依次出现动力响应,迎爆面库岸基坑坑顶的峰值应力与峰值振动速度最大,近距离大药量爆破会对库岸基坑的安全稳定造成不利影响,需要对库岸基坑采取严格的加固和隔振措施。研究成果也可为类似工程爆破施工能量波传播规律分析和不利影响评估提供参考。
Abstract
To investigate the propagation laws of energy waves generated by nearshore underwater borehole blasting and to evaluate the destructive effects of seismic waves and water shock waves on reservoir dam, as well as the damaging effects of seismic waves on reservoir shore pits, this study was conducted based on the underwater borehole blasting project at the water intake of the Second Water Source Project in Guilin City. Using a fully coupled Lagrangian-Eulerian algorithm, numerical simulations of nearshore underwater borehole blasting were carried out to analyze the changes in propagation patterns and attenuation laws of blasting energy waves, as well as the dynamic response characteristics of the reservoir dam and shore pits. The results indicated that: 1) The attenuation characteristics of the water shock wave peak pressure with the scaled distance charge (Q1/3/R), dam vibration velocity time history curve and the variation pattern of dam peak vibration velocity observed in field tests showed a high degree of consistency with the numerical simulation results. Both field tests and numerical simulations demonstrated that the attenuation characteristics of water shock wave peak pressure closely matched Cole's empirical formula, confirming the reliability of the numerical simulation model for underwater borehole blasting. 2) Based on an intuitive analysis of the propagation and attenuation characteristics of water shock waves in reservoir water and seismic waves in the reservoir bottom rock mass, the propagation process of blasting energy waves was divided into three stages: explosion stage, diffusion stage, and attenuation stage. The influence ranges of seismic waves and water shock waves caused by the propagation of energy waves, with a medium vibration velocity of v=0.1cm/s, were 270m and 206.28m, respectively, and both did not reach the foot of the reservoir dam. 3) The peak pressure of water shock waves significantly attenuated with increasing distance from the explosion center and depth. Based on the blast similarity analogy method, a dual-factor empirical calculation formula for water shock wave pressure, considering both explosion center distance and underwater depth, was established, which can be used to reliably predict the peak pressure of water shock waves at any position in the water area. 4) The propagation of blasting energy waves in the reservoir dam caused significant dynamic responses in the core wall and the dam body. The vibration response in the bottom region of the dam’s blast-facing side was intense, and localized damage occurred in the dam foot area. The peak vibration velocity at the monitoring point at the dam bottom reached 0.17cm/s, which is below the standard limit of 2.5cm/s, indicating that the dam was preliminarily in a safe and stable state; the maximum damage ratio at the dam foot was only 25%. To ensure the absolute safety of the dam, appropriate vibration isolation and protective measures should be considered. 5) The propagation of blast-induced seismic waves in the reservoir shore rock mass triggered sequential dynamic responses on the blast-facing side, bottom, side, and back-blast side of the pit. The peak stress and peak vibration velocity were highest at the top of the blast-facing side of the pit. Close-range high-charge blasting could adversely affect the safety and stability of the shore pit, necessitating strict reinforcement and vibration isolation measures in engineering practice. The findings can also provide a reference for analyzing the propagation laws of energy waves and assessing adverse impacts in similar engineering blasting projects.
关键词
近岸水下钻孔爆破 /
数值模拟 /
地震波 /
水击波 /
传播规律 /
毁伤效应
{{custom_keyword}} /
Key words
nearshore underwater drilling blasting /
numerical simulation /
seismic wave /
water shock wave /
propagation law /
damage effect
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵根,黎卫超. 水下爆破技术发展 [J] .爆破, 2020,37(01): 1-12.
ZHAO Gen, LI Wei-chao. Underwater blasting technology development [J]. Blasting, 2020,37 (01) : 1-12.
[2] Rajendran R, Lee J M. Blast loaded plates[J]. Marine Structures, 2009, 22(2): 99-127.
[3] GU Wen-bin, WANG Zhen-xiong, LIU Jian-qing, et al. Water-depth-based prediction formula for the blasting vibration velocity of lighthouse caused by underwater drilling blasting[J]. Shock and Vibration, 2017, 2017.
[4] WANG Zhen-xiong, GU Wen-bin, TING Liang, et al. Monitoring and Prediction of the Vibration Intensity of Seismic Waves Induced in Underwater Rock by Underwater Drilling and Blasting[J]. Defence Technology, 2022, 18(1): 109-118.
[5] 马晨阳. 水下钻孔爆破作用下库岸边坡动力响应特征及稳定性评价[D]. 武汉: 中国地质大学, 2021:36-39.
[6] PENG Ya-xiong, WU Li, SU Ying, et al. Review of research on safety control of seismic wave and shock wave induced by underwater blasting[J]. Geosystem Engineering, 2017, 20(3): 172-179.
[7] 高健. 爆破振动衰减规律及速度激励反应谱特性的研究[D]. 辽宁: 辽宁工程 技术大学, 2012: 4-7.
[8] 谢毓寿, 王耀文. 工业爆炸的地震效应[J]. 地球物理学报, 1962, 11(2): 154-163.
XIE Yu-shou, WANG Yao-wen. Earthquake effect of industrial explosion [J]. Chinese Journal of Geophysics, 1962,11 (2): 154-163.
[9] PENG Ya-xiong, SU Ying, WU Li, et al. Study on the Attenuation Characteristics of Seismic Wave Energy Induced by Underwater Drilling and Blasting[J]. Shock and Vibration, 2019, 2019: e4367698.
[10] 刘扬, 赵跃堂, 罗昆升, 等. 地下箱形结构在爆炸地震波作用下动力响应的解析分析[J]. 振动与冲击, 2023, 42(21): 306-315.
LIU Yang,ZHAO Yuetang,LUO Kunsheng,et al.Analytical solution of dynamic response of underground box structure under explosion seismic wave[J]. Journal of Vibration and Shock, 2023, 42(21): 306-315.
[11] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.爆破安全规程:GB 6722-2014[S].北京:中国标准出版社,2015.
[12] H. Cole. Underwater Explosions[M]. New Jersey: LISA, Princeton University Press, 1948.
[13] 李启佳,曹福,邹永胜,等.深水条件下水深对炸药性能影响研究[J].爆破:1-17
LI Qi-jia, CAO Fu, ZOU Yong-sheng, et al. Study on the effect of water depth on the performance of explosives under deep water conditions [J]. Blasting: 1-17
[14] WAN Yu, LI Wen-jie, DU Hong-bo, et al. Investigation of Shock Wave Pressure Transmission Patterns and Influencing Factors Caused by Underwater Drilling Blasting[J]. Water, 2022, 14(18): 2837.
[15] RAMAJEYATHILAGAM K, VENDHAN C P, BHUJANGA RAO V. Non-linear transient dynamic response of rectangular plates under shock loading[J]. International Journal of Impact Engineering, 2000, 24(10): 999-1015.
[16]马晨阳, 吴立, 孙苗. 自由面数量对水下钻孔爆破振动信号能量分布及衰减规律的影响[J]. 爆炸与冲击, 2022, 42(1): 145-156.
MA Chen-yang, WU Li, SUN Miao. The influence of the number of free surfaces on the energy distribution and attenuation law of underwater drilling blasting vibration signal [J]. Explosion and impact, 2022, 42 (1): 145-156.
[17] MORADLOO A J, ADIB A, PIROOZNIA A. Damage analysis of arch concrete dams subjected to underwater explosion[J]. Applied Mathematical Modelling, 2019, 75: 709-734.
[18] 刘靖晗,唐廷,韦灼彬,等.水下爆炸对高桩码头毁伤效应的试验研究[J].爆炸与冲击,2020,40(11):108-117.
LIU Jing-han, TANG Yan, WEI Zhuo-bin, et al. Experimental study on the damage effect of underwater explosion on high-piled wharf [J]. Explosion and impact, 2020,40 (11): 108-117.
[19] MA Shang, CHEN Ye-qing, WANG Zhen-qing, et al. The damage to model concrete gravity dams subjected to water explosions[J]. Defence Technology, 2023, 27: 119-137.
[20] ZHU Jing-gao, CHEN Ye-qing, LYU Lin-mei. Failure analysis for concrete gravity dam subjected to underwater explosion: A comparative study[J]. Engineering Failure Analysis, 2022, 134: 106052.
[21] 刘晓蓬,陈健云,周晶,等.水下非接触爆炸荷载下某混凝土重力坝损伤预测研究[J].振动与冲击,2022,41(12):108-116.
Liu Xiao-peng, Chen Jian-yun, Zhou Jing, et al. Damage prediction of a concrete gravity dam under non-contact underwater explosion load [J]. Vibration and shock, 2022,41 (12) : 108-116.
[22] 蒙贤忠, 周传波, 蒋楠, 等. 隧道表面爆破地震波的产生机制及传播特征[J]. 爆炸与冲击, 2024, 44(2): 177-194.
MENG Xian-zhong, ZHOU Chuan-bo, JIANG Nan, et al. Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface[J]. Explosion And Shock Waves, 2024, 44(2): 025201.
[23] SÖNNERLIND H. Beräkningsmetoder för spänningar i explosionsbelastad berg[J]. Epsilon HighTech Innovation AB, 2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}