间隔性天窗启闭对网壳结构风荷载影响规律的试验研究

李宇青1, 王昕1, 刘小兵1, 2, 3, 陈安杰1, 崔会敏2, 3, 4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 176-183.

PDF(4038 KB)
PDF(4038 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 176-183.
土木工程

间隔性天窗启闭对网壳结构风荷载影响规律的试验研究

  • 李宇青1,王昕1,刘小兵*1,2,3,陈安杰1,崔会敏2,3,4
作者信息 +

Experimental study on the influence of opening and closing of spacer skylights on the wind load on reticulated shell structures

  • LI Yuqing1,WANG Xin1,LIU Xiaobing*1,2,3,CHEN Anjie1,CUI Huimin2,3,4
Author information +
文章历史 +

摘要

大跨柱面网壳结构由于质量轻、柔度大,对风荷载比较敏感,在顶部开启间隔性天窗对结构的抗风性能具有较大的影响。以某大跨度柱面网壳结构为研究对象,通过刚性模型测压风洞试验方法,分析了在不同风向角下顶部间隔性天窗启闭对结构的体型系数、整体力系数以及极值风压系数的影响规律。结果表明:天窗的启闭对结构外表面风荷载影响整体较小,对内表面风荷载的影响比较明显。内表面风荷载的变化是导致结构风荷载随天窗启闭变化的主要原因。在跨向来流下,与天窗关闭时相比,天窗开启时,结构的跨向整体力更大,增大幅度约为34%,这种“增大效应”随着来流偏离跨向逐渐减弱,当偏离跨向60°时基本消失;结构的竖向整体力更小,减小幅度约为47%,这种“减小效应”随着来流偏离跨向逐渐减弱,但即使偏离90°(纵向来流)时仍存在。与天窗关闭时相比,天窗开启时结构的正向极值风压力增大,大部分区域的负向极值风吸力减小,但天窗局部区域的负向极值风吸力有所增大。

Abstract

The large-span cylindrical reticulated shell structure is sensitive to wind load. The opening of spacer skylights at the top has a great influence on the wind resistance of the structure. In this paper, the large-span cylindrical reticulated shell structure is studied by the rigid model pressure measurement wind tunnel test method, and the influence of the opening and closing of the top spaced skylight on the shape coefficient, the overall force coefficient and the extreme wind pressure coefficient of the structure under different wind direction angles is analyzed. The results show that the opening and closing of the skylight has little influence on the wind load of the outer surface of the structure, but the influence of the wind load of the inner surface is obvious. The change of the wind load on the inner surface is the main reason for the variation of the wind load of the structure with the opening and closing of the skylight. Compared with the skylight is closed, the overall force of the structure increases by about 34% when the skylight is opened. This effect gradually weakens with the deviation of the incoming flow, and when the deviation is 60°, the effect is basically gone. The vertical overall force of the structure is smaller, with an amplitude reduction of about 47%, and this effect gradually weakens with the deviation of the flow from the span direction, but still exists even when the deviation is 90° (longitudinal flow). Compared with the skylight is closed, the positive extreme wind pressure of the structure increases when the skylight is opened, and the negative extreme wind suction decreases in most areas, but the negative extreme wind suction increases in some areas of the skylight.

关键词

大跨柱面网壳结构 / 间隔性天窗 / 风洞试验 / 整体力系数 / 极值风压系数

Key words

large-span cylindrical reticulated shell structure / spacer skylight / wind tunnel test / overall force coefficient / extreme wind pressure coefficient

引用本文

导出引用
李宇青1, 王昕1, 刘小兵1, 2, 3, 陈安杰1, 崔会敏2, 3, 4. 间隔性天窗启闭对网壳结构风荷载影响规律的试验研究[J]. 振动与冲击, 2025, 44(6): 176-183
LI Yuqing1, WANG Xin1, LIU Xiaobing1, 2, 3, CHEN Anjie1, CUI Huimin2, 3, 4. Experimental study on the influence of opening and closing of spacer skylights on the wind load on reticulated shell structures[J]. Journal of Vibration and Shock, 2025, 44(6): 176-183

参考文献

[1] 沈世钊. 大跨空间结构的发展、回顾与展望[J]. 土木工程学报, 1998, 31(03): 5-14.
SHEN Shizhao. Development of long-span structures: a review and prospect [J]. China Civil Engineering Journal, 1998, 31(03): 5-14. (in Chinese)
[2] 康继武, 聂国隽, 钱若军. 大跨结构抗风研究现状及展望[J]. 空间结构, 2009, 15(01): 41-48.
KANG Jiwu, NIE Guojuan, QIAN Ruojun. Present state and perspectives of wind resistance studies on long-span structures[J]. Spatial Structures, 2009, 15(01): 34, 41-48. (in Chinese)
[3] SU N, PENG S T, HONG N N, et al. Wind tunnel investigation on the wind load of large-span coal sheds with porous gables: Influence of gable ventilation[J]. Journal of wind engineering and industrial aerodynamics, 2020, 204: 04242.
[4] 黄鹏, 兰志昆, 顾明. 干煤棚柱面网壳结构多参数风荷载试验研究[J]. 建筑结构, 2015, 45(17): 92-98+62.
HUANG Peng, LAN Zhikun, GU Ming. Multi-parameter experimental research of wind loads on cylindrical reticulated shell structures of dry-coal sheds[J]. Building Structure, 2015, 45(17): 92-98+62. (in Chinese)
[5] 李元齐, Tamura Yukio, 沈祖炎. 柱面壳体表面风压分布特性风洞试验研究[J]. 同济大学学报(自然科学版), 2006(11): 1457-1463.
LI Yuanqi, TAMURA Yukio, SHEN Zuyan. Wind tunnel tests for wind pressure distribution characteristics on cylindrical shells[J]. Journal of Tongji University (Natural Science), 2006, 34(11): 1457-1463. (in Chinese)
[6] 张金龙, 苏宁, 彭士涛, 等. 双跨柱面干煤棚风荷载干扰效应研究[J]. 建筑结构, 2020, 50(S2): 201-208.
ZHANG Jinlong, SU Ning, PENG Shitao, et al. Study on wind load interference effects of the double-span cylindrical dry coal sheds[J]. Building Structure, 2020, 50(S2): 201-208. (in Chinese)
[7] 马昌勤, 苏晓文, 邓东升. 基于风洞模拟试验的干煤棚网壳结构表面风压分析[J]. 安徽建筑, 2011(4): 140-142.
Ma Changqin, Su Xiaowen, Deng Dongsheng. Surface wind pressure analysis of lattice shell structure of dry coal shed based on wind tunnel simulation test [J]. Anhui Architecture, 2011(4): 140-142. (in Chinese)
[8] 冯鹤, 黄铭枫, 李强, 等. 大跨干煤棚网壳风振时程分析和等效静风荷载研究[J]. 振动与冲击, 2016, 35(1): 164-173.
Feng He, Huang Mingfeng, Li Qiang, et al. Wind vibration time history analysis and equivalent static wind load study of long-span dry coal lattice shell [J]. Journal of Vibration and Shock, 2016, 35(1): 164-173. (in Chinese)
[9] NATALINI B, NATALINI M B. Wind loads on buildings with vaulted roofs and side walls: a review[J]. Journal of wind engineering and industrial aerodynamics, 2017, 161: 9-16.
[10] 孙高健, 马文勇, 刘庆宽, 等. 开口状态及干扰对柱面结构风荷载的影响[J]. 振动测试与诊断, 2017, 37(06): 1106-1113+1275.
SUN Gaojian, MA Wenyong, LIU Qingkuan, et al. Influence of open state and disturbance on wind load of cylindrical structure[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(06): 1106-1113+1275. (in Chinese)
[11] 苏宁, 彭士涛, 洪宁宁. 山墙疏透率对并列布置双煤棚风荷载的影响[J]. 振动与冲击, 2021, 40(22): 275-282.
SU Ning, PENG Shitao, HONG Ningning. Effects of gable porosity on wind loads on parallel-arranged double coal sheds[J]. Journal of Vibration and Shock, 2021, 40(22): 275-282. (in Chinese)
[12] 陈琳琳, 崔会敏, 郑云飞, 等. 大跨柱面网壳结构风荷载试验研究[J]. 工程力学, 2019, 36(S1): 189-193. (CHEN Linlin, CUI Huimin, ZHENG Yunfei, et al. Experimental investigation of wind load on large-span cylindrical latticed shell[J]. Engineering Mechanics, 2019, 36(S1): 189-193. (in Chinese))
[13] WU Y, WU X, WEI S, et al. Experimental study of wind pressure fluctuating characteristics and wind load shape factor of long-span cylinder roof structure[J]. The Structural Design of Tall and Special Buildings, 2021, 30(10): 1-21.
[14] HUANG P, ZHOU X Y, GU M. Experimental study of wind loads on cylindrical reticulated shells[J]. Applied Mathematics and Mechanics, 2013, 34(3): 281–296.
[15] 中华人民共和国住房和城乡建设部. GB 50009—2012, 建筑结构荷载规范[M]. 北京:中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development, PRC. GB 50009-2012, Code for Load of Building Structures [M]. Beijing: China Architecture and Building Press, 2012. (in Chinese)
[16] 中华人民共和国住房和城乡建设部. JGJT338-2014, 建筑工程风洞试验方法标准[M]. 北京:中国建筑工业出版社, 2014.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. JGJT338-2014, Standard of wind Tunnel test methods for building engineering [M]. Beijing: China Architecture and Building Press, 2014. (in Chinese)

PDF(4038 KB)

104

Accesses

0

Citation

Detail

段落导航
相关文章

/