基于扩展D-P的粮食筒仓地震作用下动态侧压力影响参数研究

许启铿1, 张振乾1, 刘强1, 王丽坤2, 李亮3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 213-222.

PDF(2747 KB)
PDF(2747 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 213-222.
地震科学与结构抗震

基于扩展D-P的粮食筒仓地震作用下动态侧压力影响参数研究

  • 许启铿1,张振乾1,刘强*1,王丽坤2,李亮3
作者信息 +

Parameters affecting the dynamic lateral pressure on a column supported silo under earthquake based on the extend-D-P model

  • XU Qikeng1,ZHANG Zhenqian1,LIU Qiang*1,WANG Likun2,LI Liang3
Author information +
文章历史 +

摘要

地震作用下,筒仓结构与粮食颗粒的动力相互作用引起的动态超压是筒仓结构安全的重要问题。为此,基于扩展的Drucker-Prager模型的(扩展D-P模型)颗粒本构,建立了柱承式筒仓-粮食颗粒有限元模型,并结合开展的振动台试验对动态侧压力进行对比分析和验证,进一步构建实仓有限元模型,研究多种粮食参数对动态侧压力的影响规律,并进行了灰色关联分析。结果表明:基于扩展D-P模型的有限元模型能够反映筒仓粮食动态侧压力的变化趋势,验证了有限元模型的合理性;摩擦系数对动态侧压力的影响与所处高度相关;弹性模量对动态侧压力的关联度最大;研究揭示了地震作用下粮食参数对动态侧压力的影响机理及参数影响关联性,为筒仓-粮食颗粒动力问题数值模拟的参数选取提供了借鉴,也为筒仓结构抗震设计提供参考。

Abstract

The dynamic interaction between silo structures and grain particles under seismic loading induces dynamic overpressure, which poses a significant safety concern for silos. To address this, a finite element model of a column-supported silo and grain particles was developed based on the extended Drucker-Prager (D-P) model. Vibration table experiments were conducted to validate the dynamic lateral pressure results through comparative analysis. A full-scale silo finite element model was further constructed to examine the influence of various grain parameters on dynamic lateral pressure, with a gray relational analysis performed.Results demonstrate that the extended D-P model effectively captures the trend of dynamic lateral pressure changes, validating the FEM's accuracy.The impact of friction coefficient on dynamic lateral pressure was found to vary with silo height, while the elastic modulus showed the strongest correlation. This study clarifies the mechanisms by which grain parameters affect dynamic lateral pressure and provides valuable insights for selecting parameters in numerical simulations and seismic design of silo structures.

关键词

筒仓 / 有限元模型 / 粮食颗粒 / Drucker-Prager模型 / 动态侧压力

Key words

column-supported silo / finite element model / grain particles / Drucker-Prager model / dynamic lateral pressure

引用本文

导出引用
许启铿1, 张振乾1, 刘强1, 王丽坤2, 李亮3. 基于扩展D-P的粮食筒仓地震作用下动态侧压力影响参数研究[J]. 振动与冲击, 2025, 44(6): 213-222
XU Qikeng1, ZHANG Zhenqian1, LIU Qiang1, WANG Likun2, LI Liang3. Parameters affecting the dynamic lateral pressure on a column supported silo under earthquake based on the extend-D-P model[J]. Journal of Vibration and Shock, 2025, 44(6): 213-222

参考文献

[1] Dogangun A, Karaca Z, Durmus A, et al.Cause of Damage and Failures in Silo Structures[J].Journal of Performance of Constructed Facilities, 2009, 23(2):65-71.
[2] 张逯见. 筒承式立筒群仓结构模型模拟地震振动台试验研究[D]. 郑州:河南工业大学, 2010.
ZHANG Lu-jian. Research on the Shaking Table Test of Cylindrical Bearing-Type Silo Cluster Structural Model underSimulated Earthquake Conditions[D]. Zhengzhou:Henan University of Technology, 2010.(in Chinese)
[3] 张华. 立筒群仓结构模型模拟地震振动台试验研究[D].郑州:河南工业大学,2008.
ZHANG Hua. Study of shaking table tests on the model of group silos structures[D]. Zhengzhou:Henan University of Technology,2008. (in Chinese)
[4] 施卫星. 钢筋混凝土筒仓贮料压力及地震反应研究[D]. 上海:同济大学,1990.
SHI Wei-xing. Study on the Storage Pressure and Seismic Response of Reinforced Concrete Silos[D]. Shanghai:Tongji University,1990.(in Chinese)
[5] Silvestri S, Mansour S, Marra M, et al. Shaking table tests of a full‐scale flat‐bottom manufactured steel silo filled with wheat: Main results on the fixed‐base configuration[J]. Earthquake Engineering & Structural Dynamics, 2022, 51(1): 169-190.
[6] 龚耀清,李烨君,王录民,等. 筒承式钢筋混凝土立筒群仓的自由振动分析[J] .振动与冲击,2014,33(07):1-3+17.
GONG Yao-qing, LI Ye-jun, WANG Lu-min, et al. Free vibration analysis for a set of reinforced concrete silos with tubular foundations[J]. Journal of Vibration and Shock, 2014,33(07):1-3+17.
[7] 王命平,李玉川,刘伟. 带仓顶室筒承式筒仓的自振周期及地震作用计算[J]. 振动与冲击,2007,(08):5-8+165.
WANG Ming-ping, LI Yu-chuan, LIU Wei. Calculation of Natural Vibration Period and Seismic Action of Cylindrical Silos Supported by Cylinders and Attached with Building on Top of Silos[J]. Journal of Vibration and Shock, 2007,(08):5-8+165.
[8] 丁永刚,骆  倩,许启铿,等. 地震作用下柱承式筒仓仓壁侧压力试验研究[J]. 世界地震工程,2021, 37(03): 119-128.
DING Yong-gang, LUO Qian, Xu Qi-keng, et al. Experimental study on lateral pressure of column-supported silo under earthquake[J]. World Earthquake Engineering, 2021, 37(03): 119-128.(in Chinese) 
[9] GB50077-2017. 钢筋混凝土筒仓设计标准[S]. 北京:中国计划出版社: 2017.GB50077-2017.
Design standard of reinforced concrete silo[S].Beijing:China Planning Press: 2017.(in Chinese)
[10] EN1991-4-2006. Eurocode1: Actions on structures. part 4: Silos and tanks[S]. London: British Standards Institute (GB-BSI):2006.
[11] ACI 313-97. Standardpractice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials[S]. America: American concrete Institute. 1997.
[12] Abdel-Rahim H H A. Response the Cylindrical Elevated Wheat Storage Silos to Seismic Loading[J]. IOSR Journal of Engineering, 2014, 4(1): 42-55.
[13] Mehretehran A M, Maleki S. 3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action[J]. Thin-Walled Structures, 2018, 131: 654-667.
[14] Moazezi Mehretehran A, Maleki S. Evaluation of Normal Pressures during Filling in Steel Hoppers with Eccentric Outlet[J]. Journal of Civil Engineering and Construction, 2020, 9(3): 138-149.
[15] Wang Y, Lu Y, Ooi J Y. Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian–Eulerian formulation[J]. Powder Technology, 2014, 257: 181-190.
[16] Wang Y, Lu Y, Ooi J Y. Numerical modelling of dynamic pressure and flow in hopper discharge using the Arbitrary Lagrangian–Eulerian formulation[J]. Engineering Structures, 2013, 56: 1308-1320.
[17] Houhamdi S, Vazquez E G, Djeghaba K. Numerical simulations of pressures applied on a cylindrical silo with hopper due to a granular material by using FEM and DEM[J]. Synthèse: Revue des Sciences et de la Technologie, 2021, 27(2): 65-74.
[18] 高懿辰,邱国志. 贮料材料参数对筒仓水平地震效应的影响研究[J]. 科学技术与工程, 2017, 17(1): 79-84.
GAO Yi-chen, QIU Guo-zhi. A Research on the Effects of Material Parameters of Stored Granular Material to the Reaction of a Silo under Horizontal Earthquake[J]. Science, Technology and Engineering, 2017, 17(1): 79-84.(in Chinese)
[19] 周长东,张 泳,邱意坤,等. 地震作用下筒仓结构贮料侧压力计算方法[J].湖南大学学报(自然科学版),2020, 47(11):74-83+94.
Zhou Chang-dong, Zhang Yong, Qiu Yi-kun, et al. Calculating Method on Storage Side Pressure of Silo Structures under Earthquake[J]. Journal of Hunan University(Natural Sciences), 2020, 47(11):74-83+94.(in Chinese)
[20] Nateghi F, Yakhchalian M. Seismic behavior of silos with different height to diameter ratios considering granular material-structure interaction[J]. 2012.
[21] Guo K, Zhou C, Meng L, et al. Seismic vulnerability assessment of reinforced concrete silo considering granular material‐structure interaction[J]. The Structural Design of Tall and Special Buildings, 2016, 25(18): 1011-1030.
[22] Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of applied mathematics, 1952, 10(2): 157-165.
[23] Simulia D C. Abaqus Analysis User's Manual, Dassault Syst[J]. 2016.
[24] GB50011—201. 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
GB50011—2010. Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press, 2010.(in Chinese)
[25] 曾长女,田彦歌,宋飞如. 不同剪切速率下储仓内小麦剪胀特性的三轴实验研究[J]. 中国粮油学报,2020, 35(7): 131-136.
ZENG Chang-nv, TIAN Yan-ge, SONG Fei-ru. Effects of Shearing Velocity on Wheat Shearing During Triaxial Tests[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(7): 131-136.(in Chinese)
[26] Moya M, Aguado P J, Ayuga F. Mechanical properties of some granular agricultural materials used in silo design[J]. International Agrophysics, 2013, 27(2): 181-193.
[27] Molenda M, Stasiak M, Moya M, et al. Testing mechanical properties of food powders in two laboratories - degree of consistency of results[J].International Agrophysics, 2006, 20(1):37-45.
[28] 王振清. 粮仓建筑基本理论与设计[M]. 郑州:河南科技出版社,2015.
WANG Zhen-qing. Basic theory and design of granary architecture [M]. Zhengzhou:Henan Science and Technology Press,2015.(in Chinese)
[29] 施卫星, 朱伯龙. 地震动下煤仓贮料侧压力研究[J]. 特种结构, 1993, 10(1): 16-18.
Shi Wei-xing, Zhu Bo-long. Study on the Lateral Pressure of Stored Coal in Silos under Seismic Action[J]. ,Special Structures 1993, 10(1): 16-18.(in Chinese)
[30] 杨建勇,柳春光. 柱承式筒仓振动台试验研究及数值分析[D]. 大连:大连理工大学, 2019.
YANG Jian-yong,LIU Chun-guang. Experimental study and numerical analysis of column-supported silo shaking table[D]. Dalian: Dalian University of Technology,2019.(in Chinese)
[31] 邓聚龙. 灰色系统基本方法[M]. 武汉:华中工学院出版社,1987.
Deng Ju-long.The primary methods of grey syste theory[M].Wuhan: Huazhong Institute of Technology Press, 1987.(in Chinese)
[32]张 涛,张锋伟,孙 伟,等. 大豆籽粒的化学-力学特性灰色关联度及本构模拟[J]. 农业工程学报,2017, 33(5):9.
Zhang Tao, Zhang Feng-wei, Sun Wei, et al. Gray relation degree and constitutive modeling of chemo-mechanical properties for soybean seed[J]. Transactions of the chinese society of Agricultural Engineering,2017, 33(5):9.
[33] M. Moya, M. Guaita, P. Aguado, et al. Mechanical properties of granular agricultural materials, part 2[J]. Transactions of the ASABE, 2006, 49(2): 479-489.

PDF(2747 KB)

126

Accesses

0

Citation

Detail

段落导航
相关文章

/