古沉积盆地的泥石流不稳定运动与震动信号的响应 

黄锋1, 2, 吕立群1, 马超1, 侯成宥1, 皋子琪1, 朱贵楠1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 223-230.

PDF(3298 KB)
PDF(3298 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 223-230.
地震科学与结构抗震

古沉积盆地的泥石流不稳定运动与震动信号的响应 

  • 黄锋1,2,吕立群*1,马超1,侯成宥1,皋子琪1,朱贵楠1
作者信息 +

Debris flow unstable movement and response to seismic signals in paleosedimentary basins

  • HUANG Feng1,2,L Liqun*1,MA Chao1,HOU Chengyou1,GAO Ziqi1,ZHU Guinan1
Author information +
文章历史 +

摘要

(意义)黄河主流的下切导致同德盆地侵蚀基准面下降,促使同德盆地由古沉积区转化为侵蚀区,泥石流灾害频发,其形成运动过程的监测有利于保障河谷底部牧民的生命财产安全。(方法)运用带通滤波器(BP-filter)、快速傅里叶变换(FFT)、功率谱密度(PSD)等地震动信号处理方法,揭示泥石流运动过程中的时频特征和能量特征;结合视频、泥位计、流速计、压力传感器等监测设备分析了泥石流动力学参数与震动信号之间的关系。(结果)结果表明: STA/LTA比值能够响应泥石流事件,龙头的R值远大于龙身,当泥石流呈现阵性流时,STA/LTA比值有激增现象,而且监测值比实际值要提前;功率谱密度能反映泥石流的不稳定运动过程,中、高频率的功率谱密度与低频率相比包含着更多的泥石流动力学信息;以单一能量阈值去区分泥石流和山洪并不可行,其能量阈值受到泥石流不稳定运动过程中沿岸崩滑物质加入的影响;地震动信号与泥石流泥位、流量、流速等单一运动参数的响应关系差,与质量流的响应关系最好。

Abstract

The incision of the Yellow River's has led to a decrease in the erosion base level of the Tongde Basin, causing it to transition from a sedimentary to an erosional area, and increasing the frequency of debris flow disasters. Monitoring the formation and movement process of debris flows is beneficial for ensuring the safety of the lives and properties of pastoralists in the valley bottom. Techniques such as the Band-Pass Filter (BP-filter), Fast Fourier Transform (FFT), and Power Spectral Density (PSD) analysis are employed to uncover the time-frequency attributes and energy distribution patterns of debris flow movements. The relationship between the dynamic parameters of debris flows and vibration signals is analyzed by combining monitoring devices such as video cameras, mud level meters, flow rate meters, and pressure sensors. The results indicate that the STA/LTA ratio can effectively respond to debris flow events, with significantly higher R values at the debris flow head compared to the debris flow body. During the occurrence of episodic flows, the STA/LTA ratio exhibits a sharp increase, with monitoring values preceding actual events. Power spectral density can reflect the unstable movement process of debris flows, with mid and high-frequency bands containing more dynamic information compared to low-frequency bands. Distinguishing between debris flows and flash floods based on a single energy threshold is not feasible, as the energy threshold is influenced by the addition of material from bank collapses during the unstable movement of debris flows. The response relationship between seismic signals and single movement parameters such as mud level, flow rate, and velocity of debris flows is poor, while the relationship with mass flow is the most robust.

关键词

泥石流 / 同德盆地 / 河流下切 / 地震动信号 / 功率谱密度

Key words

Debris Flows / Tongde Basin / River Incision / Seismic Signals / Power Spectral Density

引用本文

导出引用
黄锋1, 2, 吕立群1, 马超1, 侯成宥1, 皋子琪1, 朱贵楠1. 古沉积盆地的泥石流不稳定运动与震动信号的响应 [J]. 振动与冲击, 2025, 44(6): 223-230
HUANG Feng1, 2, L Liqun1, MA Chao1, HOU Chengyou1, GAO Ziqi1, ZHU Guinan1. Debris flow unstable movement and response to seismic signals in paleosedimentary basins[J]. Journal of Vibration and Shock, 2025, 44(6): 223-230

参考文献

[1] 崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔”变化的灾害效应与减灾对策[J]. 中国科学院院刊, 2019,34(11):1313-1321.
Cui Peng, Guo Xiaojun,  Jian Tianhai, et al.,2019. Disaster effect induced by Asian water tower change and mitigation strategies[J]. Bulletin of Chinese Academy of Sciences, 34(11):1313-1321.DOI:10.16418/j.issn.1000-3045.2019.11.014.
 [2] 严炎, 崔一飞, 周开来, 等. 基于地震动信号分析的地质灾害过程重构方法研究与应用[J]. 工程地质学报, 2021,29(01):125-136.
Yan Yan,Cui Yifei,Zhou Kailai,et al., 2021. Research and application of geological hazards process reconstruction based on seismic signal analysis[J].Journal of Engineering Geology,29( 1) : 125-136. doi: 10.13544 /j.cnki.jeg.2020-478.
 [3] Hürlimann M, Coviello V, Bel C, et al. Debris-flow monitoring and warning: Review and examples[J]. Earth-Science Reviews, 2019,199:102981.
 [4] Cui P, Guo X, Yan Y, et al. Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area[J]. Geomorphology, 2018,321:153-166.
 [5] Farin M, Mangeney A, Toussaint R, et al. Characterization of rockfalls from seismic signal: Insights from laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 2015,120(10):7102-7137.
 [6] Hibert C, Mangeney A, Grandjean G, et al. Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics[J]. Journal of Geophysical Research: Earth Surface, 2011,116(F4).
 [7] Vilajosana I, Suriñach E, Abellán A, et al. Rockfall induced seismic signals: case study in Montserrat, Catalonia[J]. Natural Hazards and Earth System Sciences, 2008,8(4):805-812.
 [8] Chen T C, Lin M L, Wang K L. Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan[J]. Engineering geology, 2014,171:31-44.
 [9] Hibert C, Ekström G, Stark C P. Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis[J]. Geophysical research letters, 2014,41(13):4535-4541.
[10] Zhang Z, Tan Y J, Walter F, et al. Seismic monitoring and geomorphic impacts of the catastrophic 2018 Baige landslide hazard cascades in the Tibetan plateau[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(2): e2023JF007363.
[11] Arattano M. On the use of seismic detectors as monitoring and warning systems for debris flows[J]. Natural Hazards, 1999,20(2):197-213.
[12] Burtin A, Hovius N, Turowski J M. Seismic monitoring of torrential and fluvial processes[J]. Earth Surface Dynamics, 2016,4(2):285-307.
[13] Schimmel A, Hübl J. Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals[J]. Landslides, 2016,13:1181-1196.
[14] Farin M, Tsai V C, Lamb M P, et al. A physical model of the high‐frequency seismic signal generated by debris flows[J]. Earth Surface Processes and Landforms, 2019,44(13):2529-2543.
[15] Belli G, Walter F, McArdell B, et al. Infrasonic and seismic analysis of debris‐flow events at Illgraben (Switzerland): Relating signal features to flow parameters and to the seismo‐acoustic source mechanism[J]. Journal of Geophysical Research: Earth Surface, 2022,127(6):e2021JF006576.
[16] Zhang Z, Walter F, McArdell B W, et al. Analyzing bulk flow characteristics of debris flows using their high frequency seismic signature[J]. Journal of Geophysical Research: Solid Earth, 2021,126(12):e2021JB022755.
[17] Schimmel A, Coviello V, Comiti F. Debris-flow velocity and volume estimations based on seismic data[J]. Natural Hazards and Earth System Sciences Discussions, 2021,2021:1-21.
[18] 张培震, 王敏, 甘卫军, 等. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 2003(S1):81-92.
Zhang, Peizhen, Wang, Min., Gan, Weijun., et al., 2003. Slip Rates along Major Active Faults from GPS Measure⁃ments and Constraints on Contemporary Continental Tectonics. Earth Science Frontiers, 10(S1): 81-92.
[19] 袁道阳, 张培震, 刘百篪, 等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 2004(02):270-278.
Yang, Daoyang., Zhang, Peizhen.,  Liu,. Baichi., 1996. Geometrical Imagery and Tectonic Transformation of Late Quaternary Active Tectonics in Northeastern Margin of Qinghai-Xizang Plateau, Acta Geologica Sinica,2004(02):270-278.
[20] 杜俊, 王兆印, 李志威, 等. 黄河源同德盆地刺状水系初步研究[J]. 干旱区资源与环境, 2014,28(02):129-135.
Du, Jun., Wang, Zhaoyin., Li, Zhiwei., et al., 2014. A Prelimi⁃nary Study on Spinulose Stream Networks in the Tongde Basin of the Yellow River Source. Journal of Arid Land Resources and Environment, 28(2): 129-135.
[21] 赵振明,刘百篪. 对龙羊峡形成的初步认识[J]. 西北地质, 2005(02):24-32.
Zhao, Zhenming., Liu, Baichi., 2005. The Primary Perspective of Longyang Gorge Formation. Northwestern Geology, 38(2): 24-32.
[22] 李吉均,方小敏,马海洲,等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑:地球科学), 1996(04):316-322.
Li, Junji, Fang, Xiaomin., Ma, Haizhou., et al., 1996. Geomorpho⁃logical and Environmental Evolution in the Upper Reach⁃es of the Yellow River during the Late Cenozoic. Science in China (Series D), 26(4): 316-322.
[23] 刘志杰, 孙永军. 青藏高原隆升与黄河形成演化[J]. 地理与地理信息科学, 2007(01):79-82.
Liu, Zhijie., Sun, Yongjun., 2007. Uplift of the Qinghai⁃Tibet Pla⁃teau and Formation, Evolution of the Yellow River. Ge⁃ography and Geo ⁃ Information Science, 23(1): 79-82,91.
[24] 杨达源,吴胜光,王云飞,等. 黄河上游的阶地与水系变迁[J]. 地理科学, 1996(02):137-143.
Yuan, Dayuan., Zhang, P. Z., Liu, B. C., et al., 2004. On river terraces of the upper reaches of the Huanghe River and change of the river system. Scientia Geographica Sinica, 1996(02):137-143.
[25] Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration[J]. Nature geoscience, 2010,3(3):209-213.
[26] Lyu L, Xu M, Wang Z, et al. A field investigation on debris flows in the incised Tongde sedimentary basin on the northeastern edge of the Tibetan Plateau[J]. Catena, 2022,208:105727.
[27] 黄锋, 吕立群, 马超, 等.古沉积盆地泥石流发育与河流下切之间的响应关系[EB/OL].(2023-12-26)[2024-06-13].https://link.cnki.net/urlid/42.1874.P.20231226.1122.031.
[28] 吕立群, 周冠宇, 马超, 等. 古沉积盆地下切引发的泥石流侵蚀和波状流动耦合过程[J]. 地球科学, 2023,48(09):3389-3401.
Lü, Liqun., Zhou, Guanyu., Ma Chao., et al. Coupling process of debris flow erosion and wavy flow caused by incision on paleosedimentary basin. Earth Science, 2023,48(09):3389-3401.
[29] Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics. 1967 Jun;15(2):70-3.
[30] Stevenson P R. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing[J]. Bulletin of the Seismological Society of America, 1976,66(1):61-80.
[31] Shanmugam G. High-density turbidity currents; are they sandy debris flows?. Journal of sedimentary research. 1996 Jan 1;66(1):2-10.
[32] Kean J W, Coe J A, Coviello V, et al. Estimating rates of debris flow entrainment from ground vibrations[J]. Geophysical Research Letters, 2015,42(15):6365-6372.
[33] Moretti L, Mangeney A, Capdeville Y, et al. Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves[J]. Geophysical Research Letters, 2012,39(16).
[34] Allstadt K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms[J]. Journal of Geophysical Research: Earth Surface, 2013,118(3):1472-1490.
[35] Aki K, Richards P G. Quantitative seismology[M].Mill Valley,CA:University Science Books,2002.
[36] Iverson R M. The physics of debris flows[J]. Reviews of geophysics, 1997,35(3):245-296.
[37] Estep J, Dufek J. Substrate effects from force chain dynamics in dense granular flows[J]. Journal of Geophysical Research: Earth Surface, 2012,117(F1). 

PDF(3298 KB)

139

Accesses

0

Citation

Detail

段落导航
相关文章

/