新型金属弹簧隔震支座的试验研究及理论分析

梁煜明1, 2, 白羽1, 2, 马明3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 231-243.

PDF(3841 KB)
PDF(3841 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 231-243.
地震科学与结构抗震

新型金属弹簧隔震支座的试验研究及理论分析

  • 梁煜明1,2,白羽*1,2,马明3
作者信息 +

Experimental research and theoretical analysis on a new type of metal spring isolation bearing

  • LIANG Yuming1, 2, BAI Yu*1, 2, MA Ming3
Author information +
文章历史 +

摘要

为解决刚性滑板支座滑动过程水平刚度为零的问题,研发了一种新型金属弹簧隔震支座。通过金属弹簧组件的纯剪切试验和隔震支座的压剪试验,研究构件部分和支座整体的恢复力特性及关系,研究结果表明隔震支座的竖向承载力与水平恢复力相互独立,金属弹簧组件具有非线性的弹性恢复力,恢复力随位移增大而增加,隔震支座的摩擦力大小与竖向压力有关,耗能效果随竖向压力增大而增加。提出了边界约束条件下的曲线形状的欧拉伯努利梁大变形的计算方法,用于分析弹簧组件中变曲率弹簧片的力-位移关系,进而能根据弹簧材料和尺寸准确计算隔震支座的水平恢复力。所采用的理论分析方法与拟静力试验以及有限元算法的结果相比,吻合较好,具有可靠的计算精度和较高的计算效率。

Abstract

 In order to solve the issue of zero horizontal stiffness in the sliding process of rigid skateboard bearings, a new type of metal spring isolation bearings was developed. Through pure shear tests of the metal spring components and compression-shear tests of the isolation bearings, the relationship between the restoring force characteristics of the component part and the isolation bearing was studied. The study results indicate that the vertical bearing capacity of the isolation bearing is independent of the horizontal restoring force; the metal spring component has nonlinear elastic restoring force, with the restoring force increasing with displacement. The frictional force of the isolation bearing is related to the vertical pressure, and the energy dissipation effect increases with increasing vertical pressure. A method for calculating the large deformation of curved Euler-Bernoulli beams under boundary constraints was proposed. Using this method and basing on the spring material and dimensions, the force-displacement relationship of the isolation bearing was observed. The computed results with the proposed method agree well with the test data and the simulation results. The proposed method demonstrating reliable calculation accuracy and high computational efficiency.

关键词

弹簧隔震支座 / 水平刚度 / 弹性变形 / 静力分析 / 数值模型

Key words

spring isolation bearing / horizontal stiffness / elastic deformation / statistical analysis / numerical model

引用本文

导出引用
梁煜明1, 2, 白羽1, 2, 马明3. 新型金属弹簧隔震支座的试验研究及理论分析[J]. 振动与冲击, 2025, 44(6): 231-243
LIANG Yuming1, 2, BAI Yu1, 2, MA Ming3. Experimental research and theoretical analysis on a new type of metal spring isolation bearing[J]. Journal of Vibration and Shock, 2025, 44(6): 231-243

参考文献

[1] 王东衡. 金属簧片阻尼隔振器性能分析 [J]. 振动与冲击, 2011, 30(05): 263-6 
Wang Dongheng. System performance analysis for a metal plate spring vibration isolator [J]. Journal of Vibration and Shock, 2011, 30(5): 263-6.
[2] 王东衡. 基于综合策略的金属簧片阻尼隔振器参数优化 [J]. 机械设计, 2011, 28(07): 34-8 
Wang Dongheng. Parameter optimization of metal plate spring damping isolator based on comprehensive strategy [J]. Journal of Machine Design, 2011, 28(7): 34-8.
[3] ZHOU X , ZHAO D X, SUN X. An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity [J]. Nonlinear Dynamics, 2022, 108 (3): 1903-30.
[4] ZHOU X H,SUN X, ZHAO D X. The design and analysis of a novel passive quasi-zero stiffness vibration isolator [J].Journal  of   Vibration  Engineering & Technologies, 2021, 9(2): 225-45.
[5] ZHOU Z H, ZHOU M R , DAI Z H. Design and experimental validation of a vibration isolator with high-static low-dynamic stiffness and operating point variable property [J].Journal  of   Vibration  & Control, 2022, 28(11-12): 1341-50.
[6] WANG Z,HE C L,XU Y,et al. Static and dynamic analysis of 6-dof quasi-zero-stiffness vibration isolation platform based on leaf spring structure [J]. Mathematics, 2022, 10(8): 25.
[7] MOUSSA L, SALAH A, RAHMAN MUHAMMAD E. Elliptical leaf spring shock and vibration mounts with enhanced damping and energy dissipation capabilities using lead spring [J]. Shock  &  Vibration, 2015, 2015: 12.
[8] 黄修长. 曲梁周期结构动力学特性和隔振性能 [J]. 上海交通大学学报, 2013, 47(02): 173-9 
Huang Xiuchang. Research on dynamic properties and vibration isolation performance of curved beam periodic structure [J]. Journal of Shanghai Jiaotong University, 2013, 47(2): 173-9.
[9] Jei Y G. A new lateral vibration damper using leaf springs [J]. J Vib Acoust-Trans ASME, 1999, 121(3): 343-50.
[10] 安朝. 弹性欧拉梁大变形分析的椭圆积分统一形式 [J]. 北京航空航天大学学报, 2021, 47(07): 1379-86 
An Cao. Unified form of large deflection analysis of elastic Euler beam based on elliptic integral [J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1379-86.
[11] ZHANG A M,CHEN G M. A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms [J].Journal of Mechanisms and Robotics: Transactions of the ASME, 2013, 5(2): 10.
[12] XU K,LIU H T,XIAO J L. Static deflection modeling of combined flexible beams using elliptic integral solution [J]. International Journal of Non-Linear Mechanics, 2021, 129: 8.
[13] BANERJEE A, BHATTACHARYA B, MALLIK A K.Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches [J].International Journal of Non-Linear Mechanics, 2008, 43(5): 366-76.
[14] 陈政清. 梁杆结构几何非线性有限元的数值实现方法 [J]. 工程力学, 2014, 31(6): 42-52.
Chen Zhengqing. Numerical implementation of geometrically nonlinear finite element method for beam structures [J]. Engineering Mechanics, 2014, 31(6): 42-52.
[15] KRYSKO V A,ZHIGALOV M V,SALTYKOVA O V,et al. Effect of transverse shears on complex nonlinear vibrations of elastic beams [J].Journal of Applied Mechanics and Technical Physics, 2011, 52(5): 834-40.
[16] Zhang Y. A new nonlinear spatial compliance model method for flexure leaf springs with large width-to-length ratio under large deformation [J]. Micromachines, 2022, 13(7): 25.
[17] GAO D Y,MACHALOVÁ J,NETUKA H. Mixed finite element solutions to contact problems of nonlinear Gao beam on elastic foundation [J]. Nonlinear Analysis: Real World Applications, 2015, 22: 537-50.
[18] Yang Q S,WANG X F. A geometrical and physical nonlinear finite element model for spatial thin-walled beams with arbitrary section [J]. SCIENCE CHINA Technological Sciences, 2010, 53(3): 829-38.
[19] 孟丽霞. 惯性矩二次变化变截面梁柱几何非线性分析 [J]. 哈尔滨工业大学学报, 2014, 46(03): 20-5 
Meng Lixia. Geometric nonlinear analysis of tapered beam with inertia moment vary quadratic [J]. Journal of Harbin Institute of Technology, 2014, 46(3): 20-5.
[20] GARCEA G, MADEO A,CASCIARO R. Nonlinear FEM analysis for beams and plate assemblages based on the implicit corotational method [J].Journal of Mechanics of Materials & Structures, 2012, 7(6): 539-74.
[21] SHEIKH A H,MUKHOPADHYAY M. Linear and nonlinear transient vibration analysis of stiffened plate structures [J].Finite Elements in  Analysis  & Design, 2002, 38(6): 477-502.
[22] CHEN G M,MA F L,HAO G B. Modeling large deflections of initially curved beams in compliant mechanisms using chained beam constraint model [J]. Journal of Mechanisms and Robotics, 2019, 11(1): 10.
[23] HE C,XIE Q,YANG Z Y,et al. Modelling large planar deflections of flexible bundled conductors in substations using a modified chained-beam constraint model [J].Engineering Structures, 2019, 185: 278-85.
[24] 徐钧恒. 基于交叉簧片式铰链的变弯度机翼机构设计 [J]. 浙江大学学报(工学版), 2022, 56(03): 444-51+509 
Xu Junheng. Design of wing mechanism with variable camber based on cross-spring flexural pivots [J]. Journal of Zhejiang University Engineering Science, 2022, 56(3): 444.
[25] 李鹏飞. 含非线性大变形构件的柔顺机构建模与分析 [J]. 振动与冲击, 2019, 38(11): 110-5.
Li, Pengfei. Modeling and analysis for compliant mechanisms with nonlinear large deformation components [J]. Journ

PDF(3841 KB)

Accesses

Citation

Detail

段落导航
相关文章

/