基于地脉动数据的北川老县城河谷场地效应研究

陈钰鑫1, 2, 李平1, 2, 3, 高志寅1, 2, 田兆阳4, 薄景山1, 2, 李孝波1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 254-262.

PDF(1818 KB)
PDF(1818 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 254-262.
地震科学与结构抗震

基于地脉动数据的北川老县城河谷场地效应研究

  • 陈钰鑫1,2,李平*1,2,3,高志寅1,2,田兆阳4,薄景山1,2,李孝波1,2
作者信息 +

Valley site effects of Beichuan old county town based on microtremor data

  • CHEN Yuxin1,2, LI Ping*1,2,3, GAO Zhiyin1,2, TIAN Zhaoyang4, BO Jingshan1,2, LI Xiaobo1,2
Author information +
文章历史 +

摘要

北川老县城独特的河谷地形是其成为汶川Ms8.0特大地震受灾情况最严重地区的主要原因之一,这表明局部不规则地形对地震动传播和频谱特性有着显著影响。为深入研究该区域河谷场地效应,以北川老县城湔江河谷为研究区,在区域地质调查与钻探的基础上,沿湔江河谷左侧布设两条近乎平行河流方向的测线,开展地脉动测试,采用水平与垂直谱比方法并结合现场地质考察和钻探等结果,综合分析北川老县城河谷场地效应,研究结果表明:(1)湔江河谷场地放大效应显著,湔江河谷场地土层卓越频率集中于3.89-12.11 Hz,与卓越频率相对应的峰值放大系数为2.12-7.26。(2)脉动测点H/V谱比曲线大多呈现双峰或多峰形,表明在地下不同深度处存在两个或多个波阻抗界面。靠近河流Ⅱ号测线测点的放大倍数几乎均大于靠近山体Ⅰ号测线测点,且土层卓越频率几乎均小于Ⅰ号测线测点。两测线均在0.8 Hz左右存在阻抗比略大的分界面,在8 Hz左右存在阻抗比更大的分界面。(3)将脉动数据与实际钻孔资料相结合,初步给出了湔江河谷区域深度-频率关系式。研究成果不仅可为北川老县城震害研究提供参考,也可为河谷场地效应的深入研究积累基础性资料。

Abstract

The unique river valley terrain of Beichuan old county town is one of the main reasons for it being the area most severely affected by the Wenchuan Ms8.0 earthquake, indicating that local irregular terrain significantly affects seismic wave propagation and spectral characteristics. In order to investigate the seismic ground motion effects of the valley site on this area in depth, taking the Jianjiang river valley in Beichuan old county town as the study area. Based on regional geological investigation and drilling, two nearly parallel river-oriented profiles are laid out along the left side of the Jianjiang river valley for microtremor testing. The horizontal-to-vertical spectral ratio method is used, combined with field geological investigation and drilling results, to comprehensively analyze the valley terrain effects of Beichuan old county town. The research results show (1) Significant amplification effects of the Jianjiang river valley site, with the predominant frequencies of the Jianjiang river valley soil layer concentrated between 3.89-12.11 Hz, and corresponding peak amplification factors ranging from 2.12-7.26. (2) Most of the H/V spectral ratio curves of the pulsating points exhibit bimodal or multimodal shapes, indicating the existence of two or more wave impedance interfaces at different depths underground. The amplification factors of the points near the river line (Line II) are almost all greater than those near the mountain line (Line I), and the predominant frequencies of the soil layer are almost all lower than those of Line I points. Both lines have impedance boundaries slightly larger around 0.8 Hz and larger around 8 Hz. (3) Integrating the microtremor data with the actual drilling data, a preliminary depth-frequency relationship of the valley area is established. The research results not only provide a reference for the seismic damage research of Beichuan old county town but also accumulate basic data for the in-depth study of valley site effects.

关键词

河谷场地 / 地脉动 / 水平与垂直谱比法 / 峰值频率 / 放大系数

Key words

valley site / microtremor / horizontal-to-vertical spectral ratio method / predominant frequency / amplification factor

引用本文

导出引用
陈钰鑫1, 2, 李平1, 2, 3, 高志寅1, 2, 田兆阳4, 薄景山1, 2, 李孝波1, 2. 基于地脉动数据的北川老县城河谷场地效应研究[J]. 振动与冲击, 2025, 44(6): 254-262
CHEN Yuxin1, 2, LI Ping1, 2, 3, GAO Zhiyin1, 2, TIAN Zhaoyang4, BO Jingshan1, 2, LI Xiaobo1, 2. Valley site effects of Beichuan old county town based on microtremor data[J]. Journal of Vibration and Shock, 2025, 44(6): 254-262

参考文献

[1] 张建毅, 薄景山, 王振宇, 等. 汶川地震局部地形对地震动的影响[J]. 自然灾害学报, 2012, 21(03): 164-169.
ZHANG Jian-yi, BO Jing-shan, WANG Zhen-yu, et al. Influence of local topography on seismic ground motion in Wenchuan earthquake [J].Journal of natural disasters, 2012, 21(03):164-169.
[2] 沈欣茹, 郝冰, 李远东, 等. 河谷地形对地震动的影响分析[J]. 地震学报, 2023, 45(04): 706-716. 
SHEN Xin-ru, HAO Bin, LI Yuan-dong, et al. The influence of valley topography on ground motion[J]. Acta Seismologica Sinica, 2023, 45(04): 706-716.
[3] 张孝波, 景立平, 肖文海. 大型河谷场地地震动特性研究[J]. 防灾减灾工程学报, 2010, 30(06): 644-649+654.
ZHANG Xiao-bo, JING Li-ping, XIAO Wen-hai. Research on Ground Motion Characteristics of Large-scale Valley[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(06): 644-649+654.
[4] 曲国胜, 黄建发, 李小军, 等. 南亚(巴基斯坦)地震灾害分布及成因分析[J].震灾防御技术, 2008, 3(01): 85-94. 
QU Guo-sheng, HUANG Jian-fa, LI Xiao-jun, et al. The Hazard Assessment and Analysis of Pakistan Earthquakein 2005[J]. Technology for Earthquake Disaster Prevention, 2008, 3(01): 85-94.
[5] 李平. 汶川特大地震汉源震害异常研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013. 
LI Ping. The Research of Seismic Damage Anomalies in Hanyuan During Wenchuan Great Earthquake[D].Harbin: Institute of Engineering Mechanics, 2013.
[6] 王伟. 地震动的山体地形效应[D]. 哈尔滨: 中国地震局工程力学研究所, 2011. 
WANG Wei. Effect of Hill Topography on Ground Motion[D]. Harbin: Institute of Engineering Mechanics, 2011.
[7] Wong H L, Trifunac H D. Surface motion of a semi-elliptical alluvial valley for incident plane SH waves[J]. Bulletin of the Seismological Society of America, 1974, 64(5): 1389-1408
[8] 高玉峰. 河谷场地地震波传播解析模型及放大效应[J]. 岩土工程学报, 2019, 41(01): 1-25. 
GAO Yu-feng. Analytical models and amplification effects of seismic wave propagation in canyon sites[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(01):1-25.
[9] Zhang N, Gao Y, Cai Y, et al. Scattering of SH waves induced by a non-symmetrical V-shaped canyon[J]. Geophysical Journal International, 2012, 191(1): 243-256.
[10] 刘国利, 刘殿魁. 位移阶跃SH波对半圆形凹陷地形的散射[J]. 力学学报, 1994, (01): 70-80. 
LIU Guo-li, LIU Dian-kui. The scattering of displacement step SH-waves by a semi-cylindrical canyon[J]. ACTA MECHANICA SINICA, 1994, (01): 70-80.
[11] 吕晓棠, 安静波. 半圆形凸起与沉积谷地相连地形对SH波的散射[J]. 振动与冲击, 2014, 33(17): 127-131+137. 
LU Xiao-tang, AN Jing-bo. Ground motion of a semi-cylindrical hill joined with a semi-cylindrical alluvial valley under incident SH-waves[J]. Journal of vibration and shock, 2014, 33(17): 127-131+137.
[12] 李平, 薄景山, 李孝波, 等. 安宁河河谷及邛海地区土层场地对地震动的放大作用[J]. 岩土工程学报, 2016, 38(02): 362-369. 
LI Ping, BO Jing-shan, LI Xiao-bo, et al. Amplification effect of soil sites on ground motion in Anning River valley and Qionghai Lake area [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(02): 362-369.
[13] Tsuda K, Koketsu K, Hisada Y, et al. Inversion analysis of site responses in the Kanto Basin using data from a dense strong motion seismograph array[J]. Bulletin of the Seismological Society of America, 2010, 100(3): 1276-1287.
[14] 任叶飞, 温瑞智, 山中浩明, 等. 运用广义反演法研究汶川地震场地效应[J]. 土木工程学报, 2013, 46(S2): 146-151. 
REN Ye-fei, WEN Rui-zhi, SHANZHONG Hao-ming, et al. Research on site effect of Wenchuan Earthquake by using generalized inversion technique [J]. China civil engineering journal, 2013, 46(S2): 146-151.
[15] 王宏伟, 温瑞智, 任叶飞, 等. 利用广义反演法分析芦山地震场地反应[J]. 地震工程与工程振动, 2014, 34(04): 35-41. 
WANG Hong-wei, WEN Rui-zhi, REN Ye-fei, et al. Estimating site response based on generalized inversion method for Lushan earthquake on April 20,2013[J]. Earthquake engineering and engineering dynamics, 2014, 34(04): 35-41.
[16] Bonilla L F, Steidl J H, Lindley G T, et al. Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, coda, and H/V methods[J]. Bulletin of the Seismological Society of America, 1997, 87(3): 710-730.
[17] Delgado J, Casado C L, Estevez A, et al. Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool[J]. Journal of Applied Geophysics, 2000, 45(1): 19-32.
[18] Claprood M, Asten M W. Use of SPAC, HVSR and strong motion analysis for site hazard study over the Tamar Valley in Launceston, Tasmania[C]//Earthquake Engineering in Australia Conference. 2007.
[19] Sukumaran P, Parvez I A, Sant D A, et al. Profiling of late Tertiary–early Quaternary surface in the lower reaches of Narmada valley using microtremors[J]. Journal of Asian Earth Sciences, 2011, 41(3): 325-334.
[20] Paudyal Y R, Yatabe R, Bhandary N P, et al. A study of local amplification effect of soil layers on ground motion in the Kathmandu Valley using microtremor analysis[J]. Earthquake Engineering and Engineering Vibration, 2012, 11: 257-268.
[21] Mundepi A K. Seismic microzonation study in Doon valley, northwest Himalaya, India[J]. Journal of the Geological Society of India, 2013, 81: 767-773.
[22] Mantovani A, Valkaniotis S, Rapti D, et al. Mapping the palaeo-Piniada Valley, Central Greece, based on systematic microtremor analyses[J]. Pure and Applied Geophysics, 2018, 175: 865-881.
[23] Pudi R, Roy P, Martha T R, et al. Estimation of earthquake local site effects using microtremor observations for the Garhwal–Kumaun Himalaya, India[J]. Near Surface Geophysics, 2021, 19(1): 73-93.
[24] 李春霞, 董廷旭. 北川县地质灾害类型及特征研究[J]. 绵阳师范学院学报, 2017, 36(11): 93-97. 
LI Chun-xia, DONG Ting-xu. Types and characteristics of geological disasters in Beichuan County[J]. Journal of Mianyang Teachers’ College, 2017, 36(11): 93-97.
[25] 丁海容, 李勇, 闫亮, 等. 龙门山区湔江水系样式及其对汶川地震的响应[J]. 第四纪研究, 2013, 33(04): 802-811. 
DING Hai-rong, LI Yong, YAN Liang, et al. The Jianjiang drainage pattern in Longmenshan mountain area and its response on Wenchuan earthquake[J]. Quaternary sciences. 2013, 33(04): 802-811.
[26] Li X, Xuan Y, Zhou X, et al. Seismic effect of the Wangjiayan landslide based on microtremor measurements in Beichuan, Southwest China[J]. Landslides, 2024, 21(4): 875-888.
[27] SESAME Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. SESAME Eur. Res. Proj. Eur. Comm. -Res. Gen. Dir. WP12-Deliv. D23.12. (Project No. EVG1-CT-2000–00026 SESAME).2004.
[28] Kanai K, Tanaka T, Osada K. Measurement of the microtremor [J]. Bulletin Earthquake Research Institute, 1954, 32: 199-209.
[29] Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute, Quarterly Reports, 1989, 30(1).
[30] Stevenson P R. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing[J]. Bulletin of the Seismological Society of America, 1976, 66(1): 61-80.
[31] Allen R. Automatic phase pickers: Their present use and future prospects[J]. Bulletin of the Seismological Society of America, 1982, 72(6B): S225-S242.
[32] 刘晗, 张建中. 微震信号自动检测的STA/LTA算法及其改进分析[J]. 地球物理学进展, 2014, 29(04): 1708-1714. 
LIU Han, ZHANG Jian-zhong. STA/LTA algorithm analysis and improvement of Microseismic signal automatic detection[J]. Progress in Geophysics, 2014, 29(04): 1708-1714.
[33] 赵哲. 基于STA/LTA法的地震波初至时间提取方法[J]. 中国科技信息, 2018(09): 83-84. 
ZHAO Zhe. Seismic wave first-arrival time extraction based on STA/LTA method [J]. China science and technology information, 2018(09): 83-84.
[34] 朱胜, 李平, 李玉影, 等. 基于STA/LTA算法的地脉动有效信号自动识别研究[J]. 地震工程与工程振动, 2022, 42(02): 235-243.
ZHU Sheng, LI Ping, LI Yu-ying, et al. study on automatic recognition of effective signal of microtremor based on STA/LTA algorithm[J]. Earthquake engineering and engineering dynamics, 2022, 42(02): 235-243.
[35] Wathelet M, Chatelain J L, Cornou C, et al. Geopsy: A user‐friendly open‐source tool set for ambient vibration processing [J]. Seismological Research Letters, 2020, 91(3): 1878-1889.
[36] 李孝波,宋霖君,宣雨童,等.基于HVSR和VRSR法的场地地震响应分析[J].振动与冲击, 2023, 42(22): 303-311.
LI Xiao-bo, Song Lin-jun, Li Yu-ying, et al. Site seismic response analysis based on the HVSR and VRSR methods[J].Journal of vibration and shock, 2023, 42(22): 303-311.
[37] 陈永新, 迟明杰, 李小军. 基于强震动记录确定的场地卓越周期[J]. 地震学报, 2016, 38(01): 138-145+158. 
CHEN Yong-xin, CHI Ming-jie, LI xiao-jun. Determination of site dominant period based on strong motion records[J]. Acta Seismologica Sinica, 2016, 38(01): 138-145+158.
[38] 李明睿. 地震动放大系数与场地特征参数关联性研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2023. 
LI Ming-rui. A study of the correlation between ground motion amplication factor and site characteristic parameters[D]. Harbin: Institute of Engineering Mechanics, 2023.
[39] 张若晗, 徐佩芬, 凌甦群, 等. 基于微动H/V谱比法的土石分界面探测研究——以济南中心城区为例[J]. 地球物理学报, 2020, 63(01): 339-350. 
ZHANG Ruo-han, XU Pei-fen, LING Su-qun, et al. Detection of the soil-rock interface based on microtremor H/V spectral ratio method: a case study of the Jinan urban area[J]. Chinese journal of geophysics, 2020, 63(01): 339-350.
[40] Ibs-von Seht M, Wohlenberg J. Microtremor measurements used to Hap thickness of soft sediments[J]. Bulletin of the Seismological Society of America, 1999, 89(1): 250-259.
[41] 彭菲, 王伟君, 寇华东. 三河—平谷地区地脉动H/V谱比法探测:场地响应、浅层沉积结构及其反映的断层活动[J]. 地球物理学报, 2020, 63(10): 3775-3790. 
PENG Fei, WANG Chuan-jun, KOU Hua-dong. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area: site responses, shallow sedimentary structure, and fault activity revealed [J]. Chinese journal of geophysics, 2020, 63(10): 3775-3790.
[42] Parolai S, Bormann P, Milkereit C. New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany)[J]. Bulletin of the seismological society of America, 2002, 92(6): 2521-2527.
[43] 王伟君, 刘澜波, 陈棋福, 等. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 2009, 52(06): 1515-1525. 
WANG Wei-jun, LIU Lan-bo, CHEN Qi-fu, et al. Application of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese journal of geophysics, 2009, 52(06): 1515-1525.
[44] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范(GB 50011-2010)[S]. 2016.北京: 中国建筑工业出版社. 
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for seismic design of buildings (GB50011-2010)[S].2016.Beijing: China Architecture & Building Press.

PDF(1818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/