高速铁路基床细颗粒动力迁移机制与临界水力梯度研究

蒋红光1, 王新宇1, 马川义2, 张宁2, 刘舜3, 王川2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 263-271.

PDF(1817 KB)
PDF(1817 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 263-271.
交通运输科学

高速铁路基床细颗粒动力迁移机制与临界水力梯度研究

  • 蒋红光1,王新宇1,马川义2,张宁2,刘舜*3,王川2
作者信息 +

Dynamic migration mechanism and critical hydraulic gradient of fine particles in the subgrade bed of high-speed railway

  • JIANG Hongguang1, WANG Xinyu1, MA Chuanyi2, ZHANG Ning2, LIU Shun*3, WANG Chuan2
Author information +
文章历史 +

摘要

水-力共同作用下的高速铁路基床翻浆冒泥病害已逐渐显露,研究基床细颗粒所对应的临界水力梯度可有助于揭示翻浆冒泥的发生机制。为进一步研究高速铁路基床细颗粒动力迁移与临界水力梯度,基于构建的基床翻浆冒泥模型装置,开展了循环荷载下基床动水特性及细颗粒迁移试验,分析了水-力耦合作用下基床填料的动态孔隙水压力、水力梯度和浊度的演化规律,提出了基床填料的粒径特征与临界水力梯度的关系。结果表明:动载作用下饱和基床表层表现出超静正-负孔压交替作用,在荷载卸载时产生“负压泵吸”型的向上水力梯度,基床层间则是表现出“正压驱动”和“负压泵吸”联合作用的向上水力梯度;细颗粒在基床表层的分布与水力梯度一致,均呈现出两端高、中间低的“马鞍型”分布特征;对于基床底层,0.075 mm粒径颗粒发生迁移的临界水力梯度为0.052,低于基床层间水力梯度的试验值0.12~0.25,导致细颗粒向基床表层迁移;现行设计规范并不能完全避免动力翻浆冒泥病害,需结合列车动载水平进一步降低基床表层细颗粒含量。

Abstract

The mud pumping in subgrade bed of high-speed railway has gradually emerged resulted from the hydraulic-mechanical effect. Studying the critical hydraulic gradient corresponding to the fine particles of the subgrade bed can help to reveal the mechanism of mud pumping. In order to further study the migration and critical hydraulic gradient of fine particles in subgrade bed of high-speed railway, based on the model device for mud pumping of subgrade bed, the dynamic water characteristics and fine particles migration test under cyclic loading was carried out. The development laws of dynamic pore water pressure, hydraulic gradient and turbidity of subgrade bed filler were analyzed, and the relationship between particle size and critical hydraulic gradient of subgrade bed filler was proposed. The results show that under the dynamic loading, the surface layer presents the alternating action of positive-negative excess pore pressure, and the upward hydraulic gradient of “negative pressure pumping” is generated during the unloading. The interlayer shows the upward hydraulic gradient of the combined action of “positive pressure driving” and “negative pressure pumping”. The distribution of fine particles in the surface layer is consistent with the hydraulic gradient, showing a “saddle-shaped” distribution of high at both ends and low in the middle. For the bottom layer, the critical hydraulic gradient for the migration of 0.075 mm particles is 0.052, which is lower than the experimental values of 0.12~0.25 of the interlayer, resulting in the migration of fine particles to the surface layer. The current design specification cannot completely avoid the mud pumping. It is necessary to further reduce the fine particle content in combination with the dynamic load level of the train.

关键词

高速铁路基床 / 超静孔隙水压力 / 泵吸 / 浊度 / 临界水力梯度 / 模型试验

Key words

subgrade bed of high-speed railway / excess pore water pressure / pumping / turbidity / critical hydraulic gradient / model test

引用本文

导出引用
蒋红光1, 王新宇1, 马川义2, 张宁2, 刘舜3, 王川2. 高速铁路基床细颗粒动力迁移机制与临界水力梯度研究[J]. 振动与冲击, 2025, 44(6): 263-271
JIANG Hongguang1, WANG Xinyu1, MA Chuanyi2, ZHANG Ning2, LIU Shun3, WANG Chuan2. Dynamic migration mechanism and critical hydraulic gradient of fine particles in the subgrade bed of high-speed railway[J]. Journal of Vibration and Shock, 2025, 44(6): 263-271

参考文献

[1] BIAN Xue-cheng, WAN Zhang-bo, ZHAO Chuang, et al. Mud pumping in the roadbed of ballastless high-speed railway[J]. Géotechnique, 2021, 73(7): 614-628.
[2] WAN Zhang-bo, BIAN Xue-cheng, CHEN Yun-min. Mud pumping in high-speed railway: in-situ soil core test and full-scale model testing[J]. Railway Engineering Science, 2022, 30(3): 289-303. 
[3] LI Ya-feng, LENG Wu-ming, NIE Ru-song, et al. Laboratory full-scale model test of subgrade mud pumping for ballastless track of high-speed railway[J]. International Journal of Rail Transportation, 2022, 10(2): 230-256.
[4] 边学成, 李书豪, 万章博, 等. 路基注浆对高速铁路轨道-路基体系动力特性的影响[J]. 振动与冲击, 2022, 41(04): 294-302.
BIAN Xue-cheng, LI Shu-hao, WAN Zhang-bo, et al. Influence of injection remediation on dynamic behaviors of a high-speed railway track-subgrade system[J]. Journal of Vibration and Shock, 2022, 41(04): 294-302.
[5] MNEINA A, SHALABY A. Relating gradation parameters to mechanical and drainage performance of unbound granular materials[J]. Transportation Geotechnics, 2020, 23: 100315.
[6] WANG Teng-fei, LUO Qiang, LIU Meng-shi, et al. Physical modeling of train-induced mud pumping in substructure beneath ballastless slab track[J]. Transportation Geotechnics, 2020, 23: 100332.
[7] DUONG T V, CUI Yu-jun, TANG A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure[J]. Engineering geology, 2014, 171: 45-58.
[8] DUONG, T V, TANG A M, Cu Yu-jun, Jet al. Unsaturated hydraulic properties of fine particles of fouled ballast layer from an ancient railway track beds.[J]. Unsaturated Soils(Research and Applications), 2014,(1): 283-289.
[9] 韩博文, 蔡国庆, 李  舰, 等. 有砟轨道路基翻浆冒泥模型试验系统的研发与应用[J]. 岩土工程学报, 2022, 44(8): 1406-1415.
HAN Bo-wen, CAI Guo-qing, LI Jian, et al. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415.
[10] 王威, 吴宇健, 杨成忠, 等. 铁路路基翻浆冒泥的机理及影响因素[J]. 交通运输工程学报, 2019, 19(6): 54-64. 
WANG Wei, WU Yu-jian, YANG Cheng-zhong, et al. Mechanism and influencing factors of mud pumping in railway subgrade[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 54-64.
[11] 王威, 杨文豪, 杨成忠, 等. 铁路路基翻浆冒泥的参数敏感性及不确定性分析[J]. 铁道学报, 2022, 44(12): 105-113. 
WANG Wei, YANG Wen-hao, YANG Cheng-zhong, et al. Sensitivity Analysis and Reliability Study on lnfluencing Factors of Mud Pumping in Railway Subgrade[J]. Journal of the China Railway Society, 2022, 44(12): 105-113.
[12] SANTOS A, BEDRIKOVETSKY P. A stochastic model for particulate suspension flow in porous media[J]. Transport in Porous Media, 2006, 62(1): 23-53.
[13] BEDRIKOVETSKY P, CARUSO N. Analytical model for fines migration during water injection[J]. Transport in porous media, 2014, 101: 161-189.
[14] BEDRIKOVETSKY P, SIQUEIRA F D, FURTADO C A, et al. Modified particle detachment model for colloidal transport in porous media[J]. Transport in porous media, 2011, 86: 353-383.
[15] GAO Feng, ZHANG Sheng, HE Xu-zhen, et al. Experimental study on migration behavior of sandy silt under cyclic load[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(5): 06022003.
[16] 高峰, 张军辉, 张升, 等. 动静组合加载下颗粒迁移与沉积特性试验研究[J]. 岩土工程学报, 2023, 1-10.
GAO Feng, ZHANG Jun-hui, ZHANG Sheng, et al. Experimental study on the migration and deposition of particles under alternating dynamic loads and static loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 1-10. 
[17] 张升, 高峰, 陈琪磊, 等.砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J].岩土力学,2020,41(05):1591-1598.
ZHANG Sheng, GAO Feng,CHEN Qi-lei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020,41(05):1591-1598. 
[18] 丁瑜, 陈晓斌, 张家生, 等. 风化红砂岩残积土路基瞬态饱和区动态水压力特征试验研究[J]. 岩土力学, 2019, 40(12): 4740-4750.
DING Yu, CHEN Xiao-bin, ZHANG Jia-sheng, et al. Experimental study of dynamic water pressure in transient saturated zone of red sandstone residual soil subgrade[J]. Rock and Soil Mechanics, 2019, 40(12): 4740-4750. 
[19] 冷伍明, 粟雨, 滕继东, 等. 易发生翻浆冒泥的细粒土物理状态指标分析与评判[J]. 铁道学报, 2018, 40(1): 116-122.
LENG Wu-ming, SU Yu, TENG Ji-dong, et al. Analysis and Evaluation on Physical Characteristics of Fine-grained Soils Prone to Mud Pumping[J]. Journal of the China Railway Society, 2018, 40(1): 116-122.
[20] 聂如松, 冷伍明, 粟雨, 等. 基床翻浆冒泥土的物理力学性质[J].西南交通大学学报, 2018, 53(02): 286-295.
NIE Ru-song, LENG Wu-ming, SU Yu, et al. Physical and mechanical properties of mud pumping soils in railway subgrade bed[J]. Journal of Southwest Jiaotong University, 2018, 53(02): 286-295.
[21] INDRARATNA B, ISRAR J, LI M. Inception of geo-hydraulic failures in granular soils – an experimental and theoretical treatment[J]. Géotechnique, 2018, 68(3): 233-248.
[22] WANG Han-lin, CHEN Ren-peng, LUO Lan, et al. Numerical modeling of moisture migration in high-speed railway subgrade[J] Innovative Materials and Design for Sustainable Transportation Infrastructure, 2015: 349-363.
[23] JIANG Hong-guang, BIAN Xue-cheng, JIANG Jian-qun, et al. Dynamic performance of high-speed railway formation with the rise of water table[J]. Engineering Geology, 2016, 206: 18-32.
[24] WAN Zhang-bo, BIAN Xue-cheng, LI Shu-hao, et al. Remediation of mud pumping in ballastless high-speed railway using polyurethane chemical injection[J]. Construction and Building Materials, 2020, 259: 120401.
[25] WAN Zhang-bo, XU Wei-chang, ZHANG Zhi-yuan, et al. In-situ investigation on mud pumping in ballastless high-speed railway and development of remediation method[J]. Transportation Geotechnics, 2022, 33: 100713.
[26] Gao Feng, He Xu-zhen, Zhang Sheng. Pumping effect of rainfall-induced excess pore pressure on particle migration[J]. Transportation Geotechnics, 2021, 31: 100669.
[27] 刘孟适, 罗强, 郭建湖, 等. 无砟轨道基床翻浆形成条件模型试验与判别分析[J]. 铁道学报, 2021, 43(02): 142-151.
Model test and discriminant analysis on formation conditions of subgrade bed frost boiling of ballastless track[J]. Journal of the China Railway Society, 2021, 43(02): 142-151.
[28] 常文正, 王天亮, 王林. 水热力作用下铁路基床翻浆冒泥力学特征试验研究[EB/OL].(2024-07-31)[2024-04-28].https://doi.org/10.16285/j.rsm.2024.0018.
[29] 韩博文, 蔡国庆, 落宇杰,等. 多级/多频列车荷载–湿化耦合作用下有砟轨道路基翻浆冒泥颗粒迁移及动力特性研究[J]. 岩石力学与工程学报, 2024, 43(06): 1535-1548.
HAN Bo-wen, CAI Guo-qing, LUO Yu-jie, et al. Study on mud pumping particles migration and dynamie characteristies of ballasted track subgrades under multi-stage/ multi-frequency trainloading-wetting coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(06): 1535-1548.
[30] 韩博文, 冯怀平, 应志超, 等. 振动荷载作用下浸水过程对重载铁路基床变形特性影响研究[J].振动与冲击, 2019, 38(01): 221-228.
HAN Bo-wen, FENG Huai-ping, YING Zhi-chao, et al. Influences of soaking process on deformation characteristics of heavy haul railway subgrade under vibration load[J]. Journal of Vibration and Shock, 2019, 38(01): 221-228.
[31] GUO Yu, ZHAI Wan-ming. Long-term prediction of track geometry degradation in high-speed vehicle–ballastless track system due to differential subgrade settlement[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 1-11.
[32] JIANG Hong-guang, LI Yi-xin, WANG Yu-jie, et al. Dynamic performance evaluation of ballastless track in high-speed railways under subgrade differential settlement[J]. Transportation Geotechnics, 33 (2022): 100721.
[33] Takatoshi I. Measure for the stabilization of railway earth structure[M]. Japan Railway Technical Service, 1997.
[34] Terzaghi K, Peck R B, Mesri G. Soil Mechanics in Engineering Practice[M]. John wiley & sons, 1996.
[35] 刘杰. 土的渗透稳定与渗流控制[M]. 水利电力出版社, 1992. 
LIU Jie. Seepage stability and seepage control of soil[M]. China Water & Power Press, 1992. 
[36] 毛昶熙, 段祥宝, 吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. 岩土力学, 2009, 30(12): 3705-3709. 

PDF(1817 KB)

128

Accesses

0

Citation

Detail

段落导航
相关文章

/