为研究重载铁路小半径曲线钢轨型面优化问题,以外、内轨钢轨磨耗面积及滚动圆半径差为优化目标,在考虑减缓磨耗的同时对车辆通曲能力进行优化,运用克里格理论拟合目标函数得到相应的数学模型;通过NURBS曲线对钢轨廓形进行参数化描述,结合第二代非支配遗传算法(NSGA-II)对目标函数进行求解得到优化目标对应的优化廓形,并从优化型面的磨耗性能、动力学性能、钢轨滚动接触疲劳及车轮磨耗性能等方面进行评价。结果表明:设计变量的范围对目标函数影响显著,优化设计变量范围后求解得到的最优廓形在磨耗面积和滚动圆半径差上的表现均优于初始设计变量范围对应的最优廓形;优化型面在磨耗指数、磨耗功及钢轨磨耗量方面均优于初始CN75型面,在轮对横移量等动力学性能方面也均优于初始CN75型面,可以更好保证列车运行的安全性和稳定性;在钢轨滚动接触疲劳方面,优化型面均优于初始CN75型面,其中右轨的优化效果最为显著;在车轮磨耗方面,优化型面与初始CN75型面对车轮的磨耗影响差异较小,外、内轨优化型面整体磨耗量较初始CN75型面有微幅减少,优化型面车轮磨耗性能优于初始CN75型面。
Abstract
To investigate the optimization problem of steel rail profile on small radius curves in heavy haul railways, the wear area and rolling circle radius difference of the outer and inner rails are taken as the optimization objectives. While considering reducing wear, the ability of vehicles to negotiate curves is also optimized. The Kriging theory is used to fit the objective function and obtain the corresponding mathematical model. The NURBS theory is used to parameterize the rail profile, and the second-generation Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to solve the objective function and obtain the optimized rail profile. The wear performance, dynamic performance, rail rolling contact fatigue, and wheel wear performance of the optimized profile are analyzed to evaluate the optimization profile from multiple perspectives. The results show that the range of design variables significantly affects the objective function. After optimizing the range of design variables, the performance of the obtained optimal profile in terms of wear area and rolling circle radius difference is superior to that of the optimal profile corresponding to the initial range of design variables. The optimized profile outperforms the CN75 profile in terms of wear index, wear power, and rail wear volume. It also exhibits better dynamic performance, such as wheel lateral shift, compared to the CN75 profile, ensuring better safety and stability of train operation. In terms of rail rolling contact fatigue, the optimized profile is superior to the CN75 profile, with the right rail showing the most significant improvement. In terms of wheel wear, the difference in the wear impact on the wheel between the optimized profile and the CN75 profile is small. The overall wear volume of the optimized profile for the outer and inner rails is slightly reduced compared to the CN75 profile, and the wheel wear performance of the optimized profile is better than that of the initial CN75 profile during the early stage of wear.
关键词
轮轨磨耗 /
小半径曲线钢轨型面优化 /
设计变量影响效应 /
NSGA-II算法 /
钢轨疲劳损伤
{{custom_keyword}} /
Key words
wheel-rail wear /
optimization of steel rail profiles for small radius curves /
the impact of design variables /
NSGA-II algorithm /
rail fatigue damage
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LI G, Li X, el at. Multi-objective optimisation of high-speed rail profile with small radius curve based on NSGA-II Algorithm[J]. Vehicle System Dynamics.2023,61:3112-3135.
[2] Wang M Q, Jia J H, el at. Multiobjective optimisation of rail profile at high speed[J]. Vehicle System Dynamics. 2024, 62: 673-694.
[3] 温士明. 地铁线路小半径曲线钢轨打磨廓形研究[D]. 西南交通大学, 2018.
WEN Shiming. Research on Rail Grinding Profile for Small Radius Curves in Subway Lines[D]. Chengdu: Southwest Jiaotong University, 2018.
[4] 林凤涛, 庞华飞, 邓卓鑫等. 曲线区钢轨双打磨廓形设计方法[J]. 铁道科学与工程学报, 2022, 19(01): 87-99.
LIN Fengtao, PANG Huafei, DENG Zhuoxin, et al. Design method of double grinding profile for curved rail [J]. Journal of Railway Science and Engineering, 2022, 19(01): 87-99.
[5] 杨家庭. 基于轮轨接触关系的钢轨打磨廓形多目标优化方法研究[D]. 北京交通大学, 2022.
YANG Jiating. Research on Multi-objective Optimization Method for Rail Grinding Profile Based on Wheel-Rail Contact Relationship[D]. Beijing: Beijing Jiaotong University, 2022.
[6] 王亮, 向伟彬, 刘宏达等. 小半径曲线钢轨非对称打磨目标型面优化[J]. 机械科学与技术, 2021, 40(06): 949-954.
WANG Liang, XIANG Weibin, LIU Hongda, et al. Target Profile Optimization of Asymmetrical Grinding for Rail with Sharp-radius Curve[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(06): 949-954.
[7] 张斌, 汪龙洋, 杨宗超等. 小半径曲线段钢轨打磨方案比选及动力特性研究[J]. 振动与冲击, 2023, 42(24): 169-174+184.
ZHANG Bin, WANG Longyang, YANG Zongchao, et al. A study on comparison of grinding schemes and dynamic characteristics of small radius curve sections[J]. Journal of Vibration and Shock, 2023, 42(24): 169-174+184.
[8] 杨新文, 刘姝彤, 胡耀华. 现代有轨电车槽型钢轨型面优化分析[J]. 同济大学学报(自然科学版), 2022, 50(06): 891-898.
YANG Xinwen, LIU Shutong, HU Yaohua. Optimal Design of Profile of Groove-Shaped Rail of Modern Trams [J]. Journal of TongJi University (Natural Science), 2022, 50(06): 891-898.
[9] 姜曼, 杨岳, 丘文生等. 面向廓形质量的钢轨打磨模式优化决策方法[J]. 铁道科学与工程学报, 2023, 20(02): 537-544.
JIANG Man, YANG Yue, QIU Wensheng, et al. Optimal decision method of rail grinding pattern oriented to rail profile quality[J]. Journal of Railway Science and Engineering, 2023, 20(02): 537-544.
[10] 毛鑫, 沈钢. 基于轮径差函数的曲线钢轨打磨廓形设计[J]. 同济大学学报(自然科学版), 2018, 46(02): 253-259.
MAO Xin, SHENG Gang. Curved Rail Grinding Profile Design Based on Roling Radii Difference Function [J]. Journal of TongJi University (Natural Science), 2018, 46(02): 253-259.
[11] CUI D B, Fu Y, Wu Y, et al. Optimisation of rail profile and grinding pattern in the curve section of a subway[J]. Vehicle System Dynamics, 2023: 1-21.
[12] CHEN R, GONG Z, LUO Y, et al. Optimisation of turnout rail profiles based on equivalent conicity[J]. Vehicle System Dynamics, 2022, 60(9): 3071-3087.
[13] WANG P, Gao L, XIN T, CAI XP, et al. Study on the numerical optimization of rail profiles for heavy haul railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2017,231(6).
[14] 王军平.基于廓形打磨的小半径曲线钢轨磨耗控制方法研究[J].铁道学报,2021,43(01):128-134.
WANG Junping. Research on Rail Wear Control Method Based on Profile Grinding for Sharp Curve Rail [J]. Journal of the China Railway Society, 2021,43(01):128-134.
[15] JIANG H W, GAO L. Optimizing the Rail Profile for High-Speed Railways Based on Artificial Neural Network and Genetic Algorithm Coupled Method[J]. Sustainability, 2020,12(2).
[16] 周骏,刘林芽,李纪阳.基于多目标优化策略的曲线钢轨非对称打磨设计[J/OL].铁道科学与工程学报:1-13.
ZHOU Jun, LIU Linya, LI Jiyang. Design of asymmetric grinding for curved rail based on multi-objective optimization strategy[J]. Journal of Railway Science and Engineering, 1-13.
[17] 林凤涛,胡伟豪.磨耗钢轨经济性打磨型面研究[J].铁道科学与工程学报,2020,17(10):2493-2502.
LIN Fengtao, HU Weihao. Study on the economical grinding surface of wear rail[J]. Journal of Railway Science and Engineering, 2020,17(10):2493-2502.
[18] 王璞. 重载铁路轮轨磨耗预测及钢轨型面优化研究[D]. 北京交通大学, 2017.
WANG Pu. Prediction of Wheel-rail Wear and Optimization of Profile for Heavy Haul Railway[D]. Beijing: Beijing Jiaotong University, 2017.
[19] 中国铁路总公司.普速铁路线路修理规则补充说明.2022.
China Railway Corporation. Supplementary Rules for Maintenance of Conventional Railway Lines. 2022.
[20] 张剑,王玉艳,金学松,等.改善轮轨接触状态的车轮型面几何设计方法[J].交通运输工程学报,2011,11(01):36-42.
ZHANG Jian, WANG Yuyan, JIN Xuesong, et al. Geometric design method of wheel profile for improving wheel and rail contact status [J].Journal of Traffic and Transportation Engineering,2011,11(01):36-42.
[21] ZHAI W M, GAO J, LIU P, et al. Reducing rail side wear on heavy-haul railway curves based on wheel–rail dynamic interaction[J]. Vehicle System Dynamics, 2014,52(sup1):440–454.
[22] KASHYAP N, KUMARI A C.Multi-objective Optimization using NSGA II for service composition in IoT[J].Procedia Computer Science,2020,167:1928-1933.
[23] 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会.机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社,2019.
State Administration of Market Supervision and Administration of the People’s Republic of China, StandardizationAdministration of the People’s Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock: GB/T5599—2019[S].Beijing: Standards Press of China, 2019.
[24] 赵鑫, 温泽峰, 王衡禹等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21(01): 1-35.
ZHAO Xin, WEN Zefeng, WANG Hengyu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(01): 1-35.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}