横向振动荷载下输电铁塔连接螺栓松动研究

郜帆1, 任亚宁1, 李军阔1, 周万志2, 张大长2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 28-37.

PDF(2327 KB)
PDF(2327 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 28-37.
振动理论与交叉研究

横向振动荷载下输电铁塔连接螺栓松动研究

  • 郜帆1,任亚宁1,李军阔1,周万志*2,张大长2
作者信息 +

Bolt looseness of a transmission tower under transverse vibration load

  • GAO Fan1,REN Yaning1,LI Junkuo1,ZHOU Wanzhi*2,ZHANG Dachang2
Author information +
文章历史 +

摘要

输电线路长期承受风荷载、导线振动、舞动等动力荷载作用,导致螺栓预紧力损失甚至发生松脱,严重影响输电塔及线路安全。铁塔连接节点通常采用螺栓连接,螺栓承担剪力及横向振动荷载。然而,相关规范仅规定螺栓的紧固扭矩达到紧固及防松的目的,影响防松特性的其他因素往往被忽略,可能影响螺栓的长期紧固状态及日常运行维护。首先,对输电杆塔常用6.8级M16粗制高强螺栓开展横向振动试验,研究了不同频率、振幅和扭矩对螺栓预紧力及防松特性的影响;然后,开展横向振动荷载下螺栓防松特性的模拟分析,并与试验结果及规范规定进行对比验证;最后,考察了横向振动状态下螺栓变形和螺纹区应力,以及不同初始预紧力下螺栓松动规律。研究结果表明:预紧力下降曲线分为快速下降和平稳下降两个阶段,当横向振动频率越小,振幅越大,扭矩越小时,螺栓越容易发生松脱;横向振动荷载下,螺纹区应力分布不均匀,整体呈倒梯形分布;螺纹应力分布由螺杆段向自由端逐渐降低,最大应力点从中间位置移至两侧;预紧力越高防松性能越好。因此,可知规范规定的扭矩法所对应的预紧力较低,建议使用预紧力控制,取0.5倍~0.6倍屈服紧固轴力。

Abstract

Transmission lines are subjected to dynamic loads such as wind loads, conductor vibrations, and dancing for a long time, resulting in loss of bolt preload or even loosening, which seriously affects the safety of transmission towers and lines.The joints of the tower are usually connected by bolts, which bear the shear force and lateral vibration load.However, relevant codes only specify that the tightening torque of bolts should achieve the purpose of tightening and preventing loosening, and other factors that affect the anti-loosening characteristics are often ignored, which may affect the long-term tightening state and daily operation and maintenance of bolts.Transverse vibration tests were conducted on 6.8 grade M16 rough high-strength bolts commonly used in transmission towers, and the effects of different frequencies, amplitudes, and torques on the bolt preload and fastening characteristics were studied.Then, a simulation analysis of the anti-loosening characteristics of bolts under transverse vibration load was carried out, and the results were compared and verified with the test results and specifications.The bolt deformation and thread area stress under transverse vibration state, as well as the bolt loosening law under different initial preloads were investigated.The results show that the decline curve of preload can be divided into two stages: rapid decrease and steady decrease.When the transverse vibration frequency is lower, the amplitude is larger, and the torque is smaller, the bolt is more likely to loosen.Under transverse vibration load, the stress distribution in the threaded area is uneven, with an overall trapezoidal distribution.Furthermore, the stress distribution of the thread gradually decreases from the screw section towards the free end, and the maximum stress point moves from the middle position to both sides.The higher the preload, the better the anti-loosening performance.Therefore, it can be seen that the preload force corresponding to the torque method specified in the code is relatively low.It is recommended to use preload force control and take 0.5 to 0.6 times the yield tightening axial force.

关键词

螺栓连接 / 横向振动试验 / 松脱特性 / 数值模拟 / 螺纹应力

Key words

bolt connection / transverse vibration test / release characteristic / numerical simulation / thread stress

引用本文

导出引用
郜帆1, 任亚宁1, 李军阔1, 周万志2, 张大长2. 横向振动荷载下输电铁塔连接螺栓松动研究[J]. 振动与冲击, 2025, 44(6): 28-37
GAO Fan1, REN Yaning1, LI Junkuo1, ZHOU Wanzhi2, ZHANG Dachang2. Bolt looseness of a transmission tower under transverse vibration load[J]. Journal of Vibration and Shock, 2025, 44(6): 28-37

参考文献

[1] 杨风利, 李正, 张大长, 等. 输电铁塔双螺母防松螺栓横向振动试验研究[J]. 振动与冲击, 2018, 37(10): 164-171.
YANG Fengli, LI Zheng, ZHANG Dachang, et al. Experimental study on the transversal vibration of double-nut bolted joints of transmission towers [J]. Journal of vibration and shock, 2018, 37(10): 164-171. (in Chinese)
[2] 李嘉祥, 张超, 程金鹏, 等. 输电塔螺栓搭接节点滞回性能试验研究[J]. 振动与冲击, 2023, 42(22): 10-18.
LI Jiaxiang, ZHANG Chao, CHENG Jinpeng, et al. Experimental study on the hysteretic performance of bolted lap joints of a transmission tower [J]. Journal of vibration and shock, 2023, 42(22): 10-18. (in Chinese)
[3] 陈城, 许海源, 王晨, 等. 500 kV输电塔线体系强风荷载倒塌分析[J]. 工业建筑, 2019, 49(12): 36-41.
CHEN Cheng, XU Haiyuan, WANG Chen, et al. Collapse Ansys of 500 kilovolts transmission tower line system under strong wind load [J]. Industrial Construction, 2019, 49(12): 36-41. (in Chinese)
[4] 李文斌, 陈剑平, 周方, 等. 强风作用下输电杆塔损伤破坏特点研究[J]. 武汉理工大学学报, 2020, 42(4): 72-79.
LI Wenbin, CHEN Jianping, ZHOU Fang, et al. Research on damage and destruction characteristics of transmission tower subjected to strong wind [J]. Journal of Wuhan University of Technology, 2020, 42(4): 72-79. (in Chinese)
[5] GOODIER J N, SWEENEY R J. Loosening by vibration of threaded fastenings [J]. Mechanical Engineering, 1945, 67: 794-800.
[6] YANG X, NASSAR S A, WU Z, MENG A. Nonlinear behavior of preloaded bolted joints under a cyclic separating load [J]. Journal of Pressure Vessel Technology, 2012, 134(1): 011206.
[7] JUNKER G H. New criteria for self-loosening of fasteners under vibration [J]. SAE Paper 690055. 1969: 314-335.
[8] 中华人民共和国国家质量监督检验检疫总局. 紧固件横向振动试验方法: GB/T 10431-2008[S]. 北京:中国标准出版社,2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Transverse vibration testing method for fasteners: GB/T 10431-2008 [S]. Beijing, Standards Press of China, 2008. (in Chinese)
[9] SAKAI T. The friction coefficient of fasteners [J]. Bull. JSME, 1978, 21: 333-340.
[10] JIANG Y Y, ZHANG M, LEE C H. A study of early stage self-loosening of bolted joints. journal of mechanical design [J]. ASME Journal of Mechanical Design, 2003, 125(9): 518-525.
[11] JIANG Y Y, ZHANG M, PARK T W, LEE C H. An experimental study of self-loosening of bolted joints [J]. ASME Journal of Mechanical Design, 2004, 126(9): 925-931.
[12] 王崴, 徐浩, 马跃. 螺距和孔隙对螺栓连接自松弛的影响[J]. 空军工程大学学报(自然科学版), 2014, 12(1): 87-90.
WANG Wei, XU Hao, MA Yue. The effect thread pitch and clearance on self-loosening of bolted joints [J]. Journal of Air Force Engineering University, 2014, 12(1): 87-90. (in Chinese)
[13] 王长科. 横向激励下螺栓特殊连接形式对其松动的影响研究[D]. 西南交通大学, 2017.
WANG Changke. Research about influence of special connection form on bolt joints self-loosening under transverse excitation [D]. Southwest Jiaotong University, 2017. (in Chinese)
[14] CRUZ A, Simões R, ALVES R. Slip factor in slip resistant joints with high strength steel [J]. Journal of Constructional Steel Research, 2012, 70(6): 280-288.
[15] CROCCOLO D, AGOSTINIS M D, FINI S, OLMI G, et al. Tribological Properties of Connecting Rod High Strength Screws Improved by Surface Peening Treatments [J]. Metals, 2020, 10(3): 334.
[16] 彭奕亮, 魏霞冰, 李洪波. 镀锌处理对高强螺栓扭矩系数和抗滑移系数的影响[J]. 钢结构, 2012, 27(8): 10-14.
PENG Yiliang, WEI Xiabing, LI Hongbo. The influence of galvanization on the torque coefficient and slip coefficient of high strength bolt [J]. Steel Construction(Chinese & English), 2012, 27(8): 10-14. (in Chinese)
[17] 李玲, 田辉涛, 妙东浩, 等. 横向循环载荷下多螺栓连接松弛特性分析[EB/OL]. (2023-11-30)[2024-06-20].https://doi.org/10.13229/j.cnki.jdxbgxb.20230840.
[18] 李玲, 张勇, 妙东浩, 等. 扭转载荷作用下螺栓连接结构松动特性研究[EB/OL].(2024-05-22)[2024-06-20]https://doi.org/10.13433/j.cnki.1003-8728.20240066.
[19] 刘召辉, 项继圣, 孙清超, 等. 螺栓连接随机振动下的疲劳分析[J]. 机械设计与制造, 2024,(01):30-35+40.
LIU Zhaohui, XIANG Jisheng, SUN Qingchao, et al. Fatigue analysis of bolted connections under random vibration[J]. Machinery Design & Manufacture, 2024, (01): 30-35+40. (in Chinese)
[20] 隋斌, 邓婕, 闫晓彦, 等. M24高强度螺栓低周疲劳试验与理论研究[J]. 中国科技论文, 2024,19(06):677-686.
SUI Bin, DENG Jie, YAN Xiaoyan, et al. Low cycle fatigue test and theoretical research on M24 high strength bolt[J]. China Science paper, 2024,19(06):677-686. (in Chinese)
[21] 樊丽轩, 王金龙, 薛少飞, 等. 疲劳荷载特性对8.8级M24高强度螺栓疲劳裂纹扩展机理影响探析[J]. 建筑钢结构进展, 2023,25(04):79-87.
FAN Lixuan, WANG Jinlong, XUE Shaofei, et al. An analysis on the influence of fatigue loading to the fatigue crack propagation mechanism of 8.8 grade M24 high-strength bolts[J]. Progress in Steel Building Structures, 2023,25(04):79-87. (in Chinese)
[22] 刘永超. 基于振动声学的螺栓疲劳开裂检测方法[J]. 制造技术与机床, 2022,(08):142-148.
LIU Yongchao. Detection method of bolt fatigue cracking based on vibration acoustics[J]. Manufacturing Technology & Machine Tool, 2022,(08):142-148. (in Chinese)
[23] 杨帅杰. 风力发电塔螺栓松动监测系统的建立与应用[J]. 建筑结构, 2023,53(S1):2131-2136.
YANG Shuaijie. Establishment and application of bolt loosening monitoring system for wind turbine tower[J]. Building Structure, 2023,53(S1):2131-2136. (in Chinese)
[24] 陈鹏. 基于压电陶瓷的螺栓群节点松动损伤监测及数值模拟[D]. 长沙理工大学, 2022.
CHEN Peng. Monitoring and numerical simulation of looseness and damage of bolt group joints based on piezoelectric ceramics[D]. Changsha University of Science & Technology, 2022. (in Chinese)
[25] 周奎, 吴昊, 刘钰洁. 基于计算机视觉的螺栓松动角度测量技术[J].西安文理学院学报(自然科学版),2024,27(03):1-5.
ZHOU Kui, WU Hao, LIU Yujie. Bolt loosening angle measurement technology based on computer vision[J] Journal of Xi'an University (Natural Science Edition) (in Chinese)
[26] 中华人民共和国住房城乡建设部. 110kV~750kV架空输电线路施工及验收规范: GB 50233-2014[S]. 北京:中国计划出版社, 2014.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for construction and acceptance of 110kV~750kV overhead transmission line: GB 50233-2014 [S]. Beijing, China Planning Press, 2014. (in Chinese)
[27] 孙成, 张大长. 新疆东部地区750 kV输电塔疲劳寿命分析[J]. 土木工程与管理学报, 2019,36(01):150-155.
SUN Chen, ZHANG Dachang. Fatigue life analysis of 750 kV transmission tower in eastern Xinjiang[J]. Journal of Civil Engineering and Management, 2019, 36(01): 150-155. (in Chinese)
[28] 常星亚. 风载作用下输电铁塔螺栓连接松动特性研究[D]. 华北电力大学,2015.
CHANG Xingya. Research on loose characteristics of bolted joint used on transmission tower under the action of wind[D]. North China Electric Power University, 2015. (in Chinese)
[29] 赵建平, 张姚斌, 王春耀. 输电塔架联接螺栓横向振动试验研究[J]. 新疆大学学报(自然科学版), 2018,35(02):243-247.
ZHAO Jianping, ZHANG Yaobin, WANG Chuanyao. Experimental study on lateral vibration of transmission towers using bolt[J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2018, 35(02): 243-247. (in Chinese)
[30] ZHANG M, LU L, WANG W, et al. The roles of thread wear on self-loosening behavior of bolted joints under transverse cyclic loading[J]. Wear,2018, 394-395:30-39.
[31] LIU J, MI X, HU H, et al. Loosening behaviour of threaded fasteners under cyclic shear displacement[J]. Wear ,2020, 460-461:203453.
[32] LIU J, OUYANG H, PENG J, et al. Experimental and numerical studies of bolted joints subjected to axial excitation[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2016,346-347:66-77.
[33] 赵卫平, 常昊坛 ,籍春雷, 等. 横向振动作用下螺栓连接节点松动规律数值模拟[J]. 振动与冲击, 2024,43(08):61-69+88.
ZHAO Weiping, CHANG Haotan, JI Chunlei, et al. Numerical simulation of loosening law of bolted joints under lateral vibration[J]. Journal of Vibration and Shock, 2024, 43(08): 61-69+88. (in Chinese)
[34] 国家技术监督局. 螺纹紧固件紧固通则: GB/T 16823.2-1997[S]. 北京:中国标准出版社, 1997.

PDF(2327 KB)

311

Accesses

0

Citation

Detail

段落导航
相关文章

/