在基于振动监测的齿轮箱故障诊断中,如何准确提取由缺陷引起的周期性瞬态冲击信号是实现故障诊断的关键。但实际测量的振动信号往往包含多种干扰成分,使得瞬态冲击的提取十分困难。对此,本文提出一种基于谐波特征的稀疏增强正则化方法。该方法首先建立关于齿轮箱故障信号的加权稀疏优化模型;其次,基于谐波特征构造了一种反映周期性瞬态冲击信号强弱的指标;最后基于该指标实施重加权正则化,从而对干扰信号施加惩罚以增强降噪性能。对仿真信号和实际案例的分析结果验证了所提出方法对故障信号的重建精度优于其他稀疏分解方法和常规信号处理方法,因此能够提供更加准确的齿轮箱故障诊断结果。
Abstract
In vibration-based gearbox fault diagnosis, accurately extracting periodic transient impact signals caused by defects is critical for achieving fault diagnosis. However, the vibration signals measured in practice often contain various interference components, making the extraction of transient impacts quite challenging. To address the issue, this paper proposes a sparsity-enhancing regularization method based on harmonic features. Firstly, a weighted sparse optimization model for gearbox fault signals is established. Secondly, an indicator reflecting the strength of periodic transient impact signals is constructed based on harmonic features. Finally, reweighted regularization is implemented based on the indicator to penalize interference signals, thus enhancing the noise reduction capability. The analysis results of both simulated signals and practical cases verify that the proposed method outperforms other sparse decomposition methods and conventional signal processing methods in terms of the reconstruction accuracy for fault signals, thereby providing more accurate gearbox fault diagnosis results.
关键词
齿轮箱 /
故障诊断 /
稀疏分解 /
正则化
{{custom_keyword}} /
Key words
gearbox /
fault diagnosis /
sparse decomposition /
regularization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] RANDALL R B. Vibration-based condition monitoring: industrial, aerospace and automotive applications [M]. John Wiley & Sons, 2011.
[2] HE X Z, LIU Q, YU W, et al. A new autocorrelation-based strategy for multiple fault feature extraction from gearbox vibration signals [J]. Measurement, 2021, 171: 108738.
[3] 杨小青, 丁康, 何国林. 齿轮故障振动啮合调幅调频信号分离方法[J]. 振动工程学报, 2021, 34(2): 379-388.
YANG Xiaoqing, DING Kang, HE Guolin. A separation method of faulty gear vibration AM-FM signal [J]. Chinese Journal of Vibration Engineering, 2021, 34(2): 379-388.
[4] HUANG W, SONG Z, ZHANG C, et al. Multi-source fidelity sparse representation via convex optimization for gearbox compound fault diagnosis [J]. Journal of Sound and Vibration, 2021, 496: 115879.
[5] 邓飞跃, 强亚文, 郝如江, 等. 基于自适应Morlet小波参数字典设计的微弱故障检测方法研究[J]. 振动与冲击, 2021, 40(8): 187-193.
DENG Feiyue, QIANG Yawen, HAO Rujiang, et al. A study on a weak fault detection method based on adaptive parametric dictionary design using the Morlet wavelet [J]. Journal of Vibration and Shock, 2021, 40(8): 187-193.
[6] 樊薇, 李双, 蔡改改, 等. 瞬态成分Laplace小波稀疏表示及其轴承故障特征提取应用[J]. 机械工程学报, 2015, 51(15): 110-118.
FAN Wei, LI Shuang, CAI Gaigai, et al. Sparse representation for transients in Laplace wavelet basis and its application in feature extraction of bearing fault [J]. Journal of Mechanical Engineering, 2015, 51(15): 110-118.
[7] HE W, HU J, CHEN B, et al. GMC sparse enhancement diagnostic method based on the tunable Q-factor wavelet
transform for detecting faults in rotating machines [J]. Measurement, 2021, 174: 109001.
[8] WANG L, CAI G, WANG J, et al. Dual-Enhanced Sparse Decomposition for Wind Turbine Gearbox Fault Diagnosis [J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(2): 450-461.
[9] CAI G, WANG S, CHEN X, et al. Reweighted generalized minimax-concave sparse regularization and application in machinery fault diagnosis [J]. ISA Transactions, 2020, 105: 320-334.
[10] 黄伟国, 李仕俊, 毛磊, et al. 多源稀疏优化方法研究及其在齿轮箱复合故障检测中的应用 [J]. 机械工程学报, 2021, 57(07): 87-99.
HUANG Weiguo,LI Shijun,MAO Lei, et al.Research on multi-source sparse optimization method and its application in compound fault detection of gearbox[J].Journal of Mechanical Engineering, 2021, 57(7): 87-99.
[11] SELESNICK I W. Wavelet Transform With Tunable Q-Factor [J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575.
[12] CHU W, LIU T, WANG Z, et al. Research on the Sparse Optimization Method of Periodic Weights and its Application in Bearing Fault Diagnosis [J]. Mech Mach Theory, 2022, 177: 105063.
[13] COMBETTES P L, WAJS V R. Signal recovery by proximal forward-backward splitting [J]. Multiscale Modeling & Simulation, 2005, 4(4): 1168-1200.
[14] CAI G, SELESNICK I W, WANG S, et al. Sparsity-enhanced signal decomposition via generalized minimax-con
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}