含接地阻尼的分段刚度NES减振性能研究

杨子健1, 王军1, 2, 张建超2, 温少芳2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 47-57.

PDF(2946 KB)
PDF(2946 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 47-57.
振动理论与交叉研究

含接地阻尼的分段刚度NES减振性能研究

  • 杨子健1,王军*1,2,张建超2,温少芳2
作者信息 +

Vibration suppression of a piecewise stiffness nonlinear energy sink system with grounded damping

  • YANG Zijian1,WANG Jun*1,2,ZHANG Jianchao2,WEN Shaofang2
Author information +
文章历史 +

摘要

非线性能量阱系统主要通过阻尼元件耗散能量,改变阻尼元件的位置也会改变非线性能量阱系统的性能。该研究将接地阻尼引入分段刚度非线性能量阱,提出一种含接地阻尼的分段刚度非线性能量阱,并对其动力学特性展开研究。首先,基于复变量平均法和多尺度法推导了1:1共振下系统的慢变方程。其次,分析了不同参数对系统慢不变流形的影响,在此基础上,通过分析慢不变流形的拓扑形状,判断系统是否发生强调制响应。最后,研究了不同脉冲激励与简谐激励下,接地阻尼处于不同位置对系统减振性能的影响并和无接地阻尼的情况进行对比,同时用星鸦优化算法对系统参数进行优化。结果表明,在分段刚度非线性能量阱中引入接地阻尼可以有效改善系统的减振性能,将阻尼附加在主系统上并接地的吸振器适用于对减振效果要求较高但对耗散时间要求较低的场合,将阻尼附加在附加质量上并接地的吸振器适用于需要快速将主系统能量耗散至较低能级的场合。

Abstract

Nonlinear energy sink (NES) systems primarily dissipate energy through damping elements, and altering the location of the damping components significantly influences the performance of the systems. In this study, a novel piecewise stiffness NES with grounded damping is proposed, and the dynamic characteristics of the system are systematically investigated. Firstly, based on the complexification-averaging method and the method of multiple scales, the slow-flow equations of the system under 1:1 resonance are derived. Secondly, the effects of different parameters on the system's slow invariant manifold were analyzed. Subsequently, the occurrence of strongly modulated response (SMR) was determined by analyzing the topology of the slow invariant manifold. Finally, the effects of different positions of the grounded damping on the vibration suppression performance of the system under various pulse and harmonic excitations were studied, and comparisons were made with the case of no grounded damping. Additionally, the system parameters are optimized by the nutcracker optimization algorithm. The results indicate that introducing grounded damping into the piecewise stiffness NES can effectively improve the system's vibration suppression performance. The damper attached to the primary system and grounded is suitable for cases requiring high vibration reduction but lower demands on dissipation time, while the damper attached to the additional mass and grounded is suitable for scenarios where rapid dissipation of the primary system's energy to a lower level is required.

关键词

接地阻尼 / 振动抑制 / 复变量平均法 / 强调制响应 / 参数优化

Key words

grounded damping / vibration suppression / complexification-averaging method / strongly modulated response / parameter optimization

引用本文

导出引用
杨子健1, 王军1, 2, 张建超2, 温少芳2. 含接地阻尼的分段刚度NES减振性能研究[J]. 振动与冲击, 2025, 44(6): 47-57
YANG Zijian1, WANG Jun1, 2, ZHANG Jianchao2, WEN Shaofang2. Vibration suppression of a piecewise stiffness nonlinear energy sink system with grounded damping[J]. Journal of Vibration and Shock, 2025, 44(6): 47-57

参考文献

[1] Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber[J]. Journal of Fluids Engineering, 1928, 49(2): 9-15
[2] Ren M Z. A variant design of the dynamic vibration absorber[J]. Journal of Sound Vibration, 2001, 245(4): 762-770
[3] Kopidakis G, Aubry S, Tsironis G P. Targeted energy transfer through discrete breathers in nonlinear systems[J]. Physical Review Letters, 2001, 87(16): 165501
[4] Saeed A S, AL-Shudeifat M A, Cantwell W J, et al. Two-dimensional nonlinear energy sink for effective passive seismic mitigation[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99: 105787
[5] Yang T, Liu T, Tang Y, et al. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid[J]. Nonlinear Dynamics, 2019, 97: 1937-1944
[6] Vakakis A F. Inducing Passive Nonlinear Energy Sinks in Vibrating Systems[J]. Journal of vibration and acoustics: Transactions of the ASME, 2001, 123(3): 324-332
[7] Vakakis A F, Gendelman O. Energy Pumping in Nonlinear Mechanical Oscillators: Part II-Resonance Capture[J]. Journal of Applied Mechanics, 2001, 68(1): 42-48.87: 165501
[8] Vakakis A F, Gendelman O V, Bergman L A, et al. Nonlinear targeted energy transfer: state of the art and new perspectives[J]. Nonlinear Dynamics, 2022, 108(2): 711-741
[9] Starosvetsky Y, Gendelman O V. Bifurcations of attractors in forced system with nonlinear energy sink: the effect of mass asymmetry[J]. Nonlinear Dynamics, 2010, 59: 711-731
[10] Sui P, Shen Y, Wang X. Study on response mechanism of nonlinear energy sink with inerter and grounded stiffness[J]. Nonlinear Dynamics, 2023, 11(8): 7157-7179
[11] Li S B, Ding H. Effective damping zone of nonlinear energy sinks[J]. Nonlinear Dynamics, 2023, 111(20): 18605-18629.
[12] Vakakis A F, Al-Shudeifat M A, Hasan M A. Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment[J]. Meccanica, 2014, 49: 2375-2397
[13] 范舒铜,申永军.简谐激励下黏弹性非线性能量阱的研究[J].力学学报, 2022, 54(09): 2567-2576
Fan Shutong, Shen Yongjun. Research on a viscoelastic nonlinear energy sink under harmonic excitation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(09): 2567-2576
[14] 胡宏祥,陈林聪.随机激励下非线性能量阱系统减振性能优化研究[J].振动与冲击, 2022, 41(24): 27-32+59
Hu Hongxiang, Chen Lincong. Optimization of damping performance of a nonlinear energy sink system under random excitation. Journal of Vibration and Shock, 2022, 41(24): 27-32+59
[15] Manevitch L I, Gourdon E, Lamarque C H. Parameters optimization for energy pumping in strongly nonhomogeneous 2 dof system[J]. Chaos, Solitons & Fractals, 2007, 31(4): 900-911
[16] Manevitch L I, Musienko A I, Lamarque C H. New analytical approach to energy pumping problem in strongly nonhomogeneous 2dof systems [J]. Meccanica, 2007, 42(1): 77-83
[17] Gendelman O, Manevitch L I, Vakakis A F, et al. Energy pumping in nonlinear mechanical oscillators: Part I—Dynamics of the underlying Hamiltonian systems[J]. Journal of Applied Mechanics, 2001, 68(1), 34-41
[18] Gendelman O.V. Targeted energy transfer in systems with non-polynomial nonlinearity [J].Journal of Sound and Vibration, 2008, 315(3): 732-745
[19] Lamarque C H, Gendelman O V, Ture Savadkoohi A, et al. Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[J]. Acta mechanica, 2011, 221(1): 175-200
[20] 崔泰毓,张雷,贾学志,等.冲击载荷下分段线性刚度能量阱的优化研究[J].振动与冲击,2021,40(10):253-260
Cui taiyu, Zhang lei, Jia xuezhi, et al. Mechanical properties of piecewise linear stiffness energy sinks under impact load and its optimization. Journal of Vibration and Shock, 2021, 40(10): 253-260
[21] Yao H, Cao Y, Zhang S, et al. A novel energy sink with piecewise linear stiffness[J]. Nonlinear Dynamics, 2018, 94: 2265-2275.
[22] Li S, Zhou X, Chen J. Hamiltonian dynamics and targeted energy transfer of a grounded bistable nonlinear energy sink[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 117: 106898
[23] 隋鹏,申永军,杨绍普.一种含惯容和接地刚度的动力吸振器参数优化[J].力学学报, 2021, 53(05): 1412-1422
Sui Peng, Shen Yongjun, Yang Shaopu. Parameters optimization of a dynamic vibration absorber with inerter and grounded stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(05): 1412-1422
[24] Qi X, Zhang J, Wang J, et al. Research on vibration suppression of nonlinear energy sink with linear damping and geometrically nonlinear damping[J]. Nonlinear Dynamics, 2024: 1-30
[25] Kong X, Li H, Wu C. Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression[J]. Nonlinear Dynamics, 2018, 91: 733-754
[26] Bak B D, Rochlitz R, Kalmár-Nagy T. Energy transfer mechanisms in binary tree-structured oscillator with nonlinear energy sinks[J]. Nonlinear Dynamics, 2023, 111(11): 9875-9888
[27] Wang T, Tang Y, Qian X, et al. Enhanced nonlinear performance of nonlinear energy sink under large harmonic excitation using acoustic black hole effect[J]. Nonlinear Dynamics, 2023, 111(14): 12871-12898.
[28] Wang T, Tang Y, Yang T, et al. Bistable enhanced passive absorber based on integration of nonlinear energy sink with acoustic black hole beam[J]. Journal of Sound and Vibration, 2023, 544: 117409
[29] 张运法,孔宪仁,岳程斐.耦合组合刚度非线性能量阱的线性振子动力学分析[J].振动与冲击, 2022, 41(13): 103-111+151
Zhang Yunfa, Kong Xianren, Qiu Chengfei. Dynamic analysis of linear oscillator with coupled combined stiffness NES. Journal of Vibration and Shock, 2022, 41(13): 103-111+151
[30] Gendelman O V, Starosvetsky Y, Feldman M. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes[J]. Nonlinear Dynamics, 2008, 51: 31-46
[31] Li S, Li J, Zhu H, et al. Dynamical analysis and numerical verification of a non-smooth nonlinear energy sink[J]. International Journal of Non-Linear Mechanics, 2023, 151: 104381
[32] 刘良坤,谭平,陈洋洋,等.非线性能量阱减振系统受基底简谐激励的强调制反应分析[J]. 北京工业大学学报, 2019, 45(02): 177-185
Liu Liangkun, Tan Ping, Chen Yangyang, et al. Strongly modulated response analysis of nonlinear energy sink absorption system under ground harmonic excitation. Journal of Beijing University of Technology, 2019, 45(02): 177-185
[33] 柴凯,李爽,楼京俊,等.非线性能量阱系统的强调制响应研究[J].湖南大学学报(自然科学版), 2022, 49(08): 82-92. 
Chai Kai, Li Shuang, Lou Jingjun, et al. Investigation on strongly modulated response of nonlinear energy sink system. Journal of Hunan UniversityJournal of Hunan University(Natural Sciences) , 2022, 49(08): 82-92
[34] 陈建恩,张维兴,刘军,等.多尺度串联非线性能量阱的减振效能及阻尼连接方式研究[J].振动与冲击, 2022, 41(10): 147-153
Chen Jianen, Zhang Weixing, Liu Jun, et al. Vibration reduction efficiency and damping connection type of multi-scale series nonlinear energy sinks. Journal of Vibration and Shock, 2022, 41(10): 147-153
[35] 张运法,孔宪仁.具有组合非线性阻尼的非线性能量阱振动抑制响应分析[J].力学学报, 2023, 55(04): 972-981
Zhang Yunfa, Kong Xianren. Analysis on vibration suppression response of nonlinear energy sink with combined nonlinear damping. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(04): 972-981
[36] Zhang Y W, Lu Y N, Zhang W, et al. Nonlinear energy sink with inerter[J]. Mechanical Systems and Signal Processing, 2019, 125: 52-64
[37] Abdel-Basset M, Mohamed R, Jameel M, et al. Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems[J]. Knowledge-Based Systems, 2023, 262: 110248

PDF(2946 KB)

Accesses

Citation

Detail

段落导航
相关文章

/