随机激励下声学黑洞板疲劳寿命预测

项子建1, 杜伟奇1, 邱小彪2, 陈世磊3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 58-65.

PDF(1282 KB)
PDF(1282 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 58-65.
振动理论与交叉研究

随机激励下声学黑洞板疲劳寿命预测

  • 项子建1,杜伟奇*1,邱小彪2,陈世磊3
作者信息 +

Prediction of the fatigue life of acoustic black hole plates under random excitation

  • XIANG Zijian1,DU Weiqi*1,QIU Xiaobiao2,CHEN Shilei3
Author information +
文章历史 +

摘要

声学黑洞(Acoustic Black Hole ,简称 ABH)效应已被证明是一种潜在的振动控制和能量收集方法,但由于其局部厚度小,面临结构强度问题。本文针对ABH板结构,采用解析法建立了随机激励下ABH板振动疲劳寿命预测的解析模型。基于假设振型法,推导了ABH板的应力频响函数,在考虑随机激励的基础上,得到了结构的随机振动位移功率谱密度(Power Spectral Density,简称PSD)函数。同时基于遗传算法对材料AL6061进行了P-S-N曲线估计。另外,采用COMSOL与MATLAB软件对模型及其预测结果的正确性进行了验证,研究发现两者的固有频率偏差仅为0.11%,且位移PSD精度也十分吻合。疲劳寿命分析表明,截断厚度h_0越小和黑洞半径r_abh越大,ABH效应越好,但寿命也越小。

Abstract

The acoustic black hole (ABH) effect has been shown to be a potential method for vibration control and energy harvesting. However, it faces structural strength problems due to its small localized thickness. In this paper, for the acoustic black hole plate structure, an analytical model for vibration fatigue life prediction of acoustic black hole plate under random excitation is developed by using analytical method. Based on the assumed vibration mode method, the stress frequency response function of the acoustic black hole plate is derived, and the random vibration displacement power spectral density function of the structure is obtained based on the consideration of random excitation. The P-S-N curve of the material AL6061 was also estimated based on the genetic algorithm. In addition, the correctness of the model and its prediction results were verified by using COMSOL and MATLAB software, and it was found that the intrinsic frequency deviation of the two was only 0.11%, and the accuracy of the displacement PSD was in good agreement. The fatigue life analysis shows that the smaller the truncated thickness h_0 and the larger the black hole radius〖 r〗_abh, the better the ABH effect but also the smaller the life.

关键词

声学黑洞板 / 随机激励 / P-S-N曲线 / 疲劳寿命预测

Key words

Acoustic black hole plate / random excitation / P-S-N curve / fatigue life prediction

引用本文

导出引用
项子建1, 杜伟奇1, 邱小彪2, 陈世磊3. 随机激励下声学黑洞板疲劳寿命预测[J]. 振动与冲击, 2025, 44(6): 58-65
XIANG Zijian1, DU Weiqi1, QIU Xiaobiao2, CHEN Shilei3. Prediction of the fatigue life of acoustic black hole plates under random excitation[J]. Journal of Vibration and Shock, 2025, 44(6): 58-65

参考文献

[1] Mironov M A .Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J].Acoustical Physics,1988,34:546-547. 
[2] Krylov V .Propagation of plate bending waves in the vicinity of one- and two-dimensional acoustic 'black holes'[C]//ECCOMAS Thematic Conference on Computational Methods In Structural Dynamics and Earthquake Engineering.Rethymno, Crete, Greece:ECCOMAS,2007.
[3] Deng J , Guasch O , Zheng L ,et al.Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting[J].Journal of Sound and Vibration,2020.
[4] Ji H , Liang Y , Qiu J ,et al.Enhancement of vibration based energy harvesting using compound acoustic black holes[J].Mechanical systems and signal processing,2019,132(Oct.1):441-456.
[5] Pelat A , Gautier F , Conlon S C ,et al.The acoustic black hole: A review of theory and applications[J].Journal of Sound and Vibration,2020:115316.
[6] 王小东,张浩春,赵桂琦,等.声学黑洞环在导弹级间减振隔冲中的应用研究[J].振动与冲击,2024,43(01):1-8+19.
Wang Xiaodong, Zhang Haochun, Zhao Guiqi, et al. Application of acoustic black hole ring in missile stage shock absorption and isolation [J]. Journal of Vibration and Shock, 2019,43(01):1-8+19.
[7] Wan Z , Zhu X , Li T ,et al.Vibration Analysis of a Plate Embedded or Attached with Acoustic Black Hole Using a Virtual Spring Energy Method[J].International Journal of Structural Stability and Dynamics,2024,24(09).
[8] Liang H , Liu X , Yuan J ,et al.Influence of Acoustic Black Hole Array Embedded in a Plate on Its Energy Propagation and Sound Radiation[J].Applied Sciences, 2022, 12(3): 1325.
[9] Wang X , Liu X , He T ,et al.Structural damage acoustic emission information enhancement through acoustic black hole mechanism[J].Measurement,2022..
[10] Wen H , Jiang J , Huang H ,et al.Acoustic characteristics of composite structures with 2D acoustic black holes and stiffened plates[J].Applied acoustics, 2024(Jan.):216.
[11] 魏彩凤,杜伟奇,邱小彪.随机激励下声学黑洞梁疲劳寿命预测[J].振动与冲击,2024,43(10):37-43+63.
WEI Caifeng, Du Weiqi, Qiu Xiaobiao. Fatigue life prediction of acoustic black hole beams under Random Excitation [J]. Journal of Vibration and Shock, 2019,43(10):37-43+63. 
[12] 王耕禄,史荣昌.矩阵理论[M].国防工业出版社,1988.
Wang Genglu,Shi Rongchang. Matrix theory [M]. National Defense Industry Press,1988.
[13] 徐芝纶.弹性力学简明教程[M].高等教育出版社,2013.
Xu Zhilun. A concise tutorial on elastic mechanics [M]. Higher Education Press,2013.
[14] X,Pitoiset,and,et al.Spectral methods for multiaxial random fatigue analysis of metallic structures[J].International Journal of Fatigue,2000.
[15] Klemenc J , Fajdiga M .Estimating S–N curves and their scatter using a differential ant-stigmergy algorithm[J].International Journal of Fatigue, 2012,43:90–97.
[16] Zhang T , Xie M .On the upper truncated Weibull distribution and its reliability implications[J].Reliability Engineering & System Safety,2011,96(1):194-200.
[17] Klemenc J , Fajdiga M .Joint estimation of E–N curves and their scatter using evolutionary algorithms[J].International Journal of Fatigue, 2013,56(nov.):42-53.
[18] 张文修.遗传算法的数学基础[M].西安交通大学出版社,2000.
Zhang Wenxiu.Mathematical foundations of genetic algorithms [M]. Xi'an Jiaotong University Press,2000.
[19] &Amp B ,Sherratt.Finite Element Based Fatigue Calculations[J].2000.
[20] Bishop N .Vibration fatigue analysis in the finite element environment[J].1999.
[21] Deng J , Zheng L , Zeng P ,et al.Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams[J].Mechanical Systems and Signal Processing, 2018,118(MAR.1):461-47

PDF(1282 KB)

193

Accesses

0

Citation

Detail

段落导航
相关文章

/