手性Kelvin点阵结构设计及抗冲击性能研究

续凯旋1, 2, 李恩奇3, 周仕明1, 2, 李道奎1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 74-81.

PDF(1600 KB)
PDF(1600 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 74-81.
冲击与爆炸

手性Kelvin点阵结构设计及抗冲击性能研究

  • 续凯旋1,2,李恩奇3,周仕明1,2,李道奎*1,2
作者信息 +

Chiral Kelvin structure design and impact resistance study

  • XU Kaixuan1,2,LI Enqi3,ZHOU Shiming1,2,LI Daokui*1,2
Author information +
文章历史 +

摘要

手性点阵结构具有轻质化、高比刚度、高比强度等优点,同时具有较好的抗冲击性能。首先在Kelvin单胞结构基础上基于旋转杆件手性结构的变形机理设计了手性Kelvin单胞结构,其次通过冲击实验对比分析了手性对结构抗冲击性能的影响并对结构抗冲击性能提升的原理进行了揭示,最后研究了拓扑结构参数对结构抗冲击特性的影响。结果表明引入手性后结构的冲击应力峰值和平台应力指标有较大幅度提升,冲击应变能小幅度下降;手性Kelvin结构通过减小结构刚度和提高结构变形整体性的方式提升结构抗冲击性能;中心结构直径是影响结构抗冲击性能的主要因素,中等水平的中心结构直径和连接杆角度可以使手性Kelvin结构具有最好的抗冲击性能。研究拓展了三维手性点阵结构的构型范围,为手性Kelvin结构的参数化设计、力学分析以及在抗冲击方向的应用提供了参考。

Abstract

Chiral lattice structures offer advantages such as lightweight, high specific stiffness, and high specific strength, along with enhanced impact resistance. This research introduces a chiral Kelvin designed by leveraging the deformation mechanism of rotational rod chiral structure. Impact experiments are conducted to analyze the effect of chirality on impact resistance, revealing the underlying principles of the performance enhancement. The study examined how topological parameters influence the impact resistance. Results show that chirality significantly boosts peak impact stress and plateau stress, while marginally decreasing strain energy. The chiral Kelvin  improves impact resistance by reducing stiffness and enhancing overall deformability. The central diameter is the primary factor of the impact resistance, with moderate values of the central diameter and the angle of the connecting rods being optimal for the best impact resistance in chiral Kelvin. The study broadens the design scope of 3D chiral lattice structures and provides references for parametric design, mechanical analysis, and impact-resistant applications of chiral Kelvin.

关键词

三维手性结构 / 点阵结构 / 冲击实验 / 冲击响应

Key words

Three-dimensional chiral structure / Lattice structure / Impact experiments / Shock response

引用本文

导出引用
续凯旋1, 2, 李恩奇3, 周仕明1, 2, 李道奎1, 2. 手性Kelvin点阵结构设计及抗冲击性能研究[J]. 振动与冲击, 2025, 44(6): 74-81
XU Kaixuan1, 2, LI Enqi3, ZHOU Shiming1, 2, LI Daokui1, 2. Chiral Kelvin structure design and impact resistance study[J]. Journal of Vibration and Shock, 2025, 44(6): 74-81

参考文献

[1] HU Z, GADIPUDI V K, SALEM D R. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone[J]. Applied Composite Materials, 2019, 26(9): 15-27.
[2] GORGULUARSLAN R, GANDHI U, MANDAPATI R, et al. Design and fabrication of periodic lattice-based cellular structures[J]. Computer-Aided Design and Applications, 2015, 13(1): 50-62.
[3] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
SU Ji-long, WU Jin-dong, LIU Yuan-li. The research progress of the elastic and impact energy of honeycomb structure[J]. Journal of Materials Engineering, 2019, 47(8): 49-58.
[4] LAKES R S. Deformation mechanisms in negative Poisson’s ratio materials: structural aspects[J]. Journal of Materials Science, 1991, 26(9): 2287-2292.
[5] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs—a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182.
[6] 张新春, 刘颖. 面内冲击载荷作用下蜂窝材料单胞动态变形机制的研究[J]. 科学技术与工程, 2007, 7(12): 2799-2802.
ZHANG Xin-chun, LIU Ying. The study of the dynamic deformation mechanism of cellular materials under the impact load of the surface[J], Science and technology, 2007, 7(12): 2799-2802.
[7] 卢子兴, 李康. 四边手性蜂窝动态压溃行为的数值模拟[J]. 爆炸与冲击, 2014, 34(2): 181-187.
LU Zixing, LI Kang. Numerical simulation of the dynamic crushing behavior of the four-side chiral honeycomb[J]. Explosion and Shock Waves, 2014, 34(2): 181-187.
[8] 张政, 苏继龙. 六韧带手性蜂窝材料韧带的冲击动荷系数及稳定性分析[J]. 复合材料学报, 2019, 36(5): 1313-1318.
ZHANG Zheng, SU Ji-long. Analysis of the impact dynamics and stability of the ligament of the six ligamous honeycomb material[J]. Acta Material Composite Sinica, 2019, 36(5): 1313-1318.
[9] 江坤, 陶猛. 六韧带手性蜂窝结构覆盖层的动态压缩行为研究[J]. 舰船科学技术, 2017, 39(10): 55-60.
JIANG Kun, TAO Meng. Study on dynamic compression behavior of six ligamous honeycomb structure covering layer[J]. Ship Science and Technology, 2017, 39(10): 55-60.
[10] 任宪奔, 赵鹏铎, 李晓彬, 等. 改进型手性周期结构覆盖层的抗冲击性能研究[J]. 振动与冲击, 2017, 36(15): 142-145.
REN Xian-ben, ZHAO Peng-ze, LI-Xiao-bin, et al. The anti-impact ability of the modified chiral periodic structure is studied[J]. Journal of Vibration and Shock, 2017, 036(015): 142-145.
[11] FU M, LIU F, HU L. A novel category of 3D chiral material with negative Poisson’s ratio[J]. Composites Science and Technology, 2018, 160: 111-118.
[12] FU M H, ZHENG B B, LI W H. A novel chiral three-dimensional material with negative Poisson’s ratio and the equivalent elastic parameters[J]. Composite Structures, 2017, 176: 442-448.
[13] LAKES, RODERIC, S., et al. Chiral three-dimensional lattices with tunable Poisson’s ratio[J]. Smart Materials & Structures, 2016, 253(7): 1243-1251.
[14] LU Z, WANG Q, LI X, et al. Elastic properties of two novel auxetic 3D cellular structures[J]. International Journal of Solids and Structures, 2017, 124: 46-56.
[15] 段晟昱, 温伟斌, 方岱宁. 三维手性点阵微结构设计及其本构模型[C]. 2018年全国固体力学学术会议.
DUAN Sheng-yu, Wen Wei-bin, Fang Dai-ning. Design and Constitutive Model of 3D Chiral Lattice Microstructure [C]. 2018 National Conference on Solid Mechanics.
[16] LI X, YANG Z, LU Z. Design 3D metamaterials with compression-induced-twisting characteristics using shear–compression coupling effects[J]. Extreme Mechanics Letters, 2019, 29: 100471.
[17] ZHENG B B, ZHONG R C, CHEN X, et al. A novel metamaterial with tension-torsion coupling effect[J]. Materials & Design, 2019, 171: 107700.
[18] MONTGOMERY S M, HILBORN H, HAMEL C M, et al. The 3D printing and modeling of functionally graded Kelvin foams for controlling crushing performance[J]. Extreme Mechanics Letters, 2021, 46: 101323.
[19] LIANG H, SUN B, HAO W, et al. Crashworthiness of lantern-like lattice structures with a bidirectional gradient distribution[J]. International Journal of Mechanical Sciences, 2022, 236: 107746.
[20] KYUN SUNG M, SCHWERIN M, BADHE Y, et al. Influence of topology optimization parameters on the mechanical response of an additively manufactured test structure[J/OL]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142: 105844.
[21] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京:机械工业出版社,2020.
XIN Chun-liang, XUE Zai-qing, TU Jian, et al. Handbook of Common Material Parameters for Finite Element Analysis[M]. Beijing: Mechanical Industry Press, 2020.
[22] 杨泽水.基于3D金属打印星型超材料抗冲击性能试验研究[D].广州大学,2023.
YANG Ze-shui. Experimental Study on Anti-impact Property of Star-shaped Metamaterial Based on 3D Metal Printing[D]. Guangzhou: Guangzhou University, 2023.

PDF(1600 KB)

250

Accesses

0

Citation

Detail

段落导航
相关文章

/