基于子集模拟优化的冲击波形控制方法

李凡, 李洪双

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 82-89.

PDF(1649 KB)
PDF(1649 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 82-89.
冲击与爆炸

基于子集模拟优化的冲击波形控制方法

  • 李凡,李洪双*
作者信息 +

Shock waveform control method based on subset simulation optimization

  • LI Fan,LI Hongshuang*
Author information +
文章历史 +

摘要

地面冲击试验是航空航天设备投入使用前必不可少的阶段,因此冲击波形发生器对冲击载荷复现是至关重要的环节之一。针对冲击波形重复精度低和可控性差的问题,提出一种面向多孔式冲击波形发生器的波形控制方法。根据阻尼孔的流动特性和活塞的受力状态,建立试验系统的冲击响应计算模型及其离散计算形式。考虑子集模拟优化算法面对高维复杂优化问题时具有收敛快、不易陷入局部最优解的优势,使用该算法寻求各排阻尼孔数量的最优离散组合,并与遗传算法进行对比。结果表明:对于不同试验要求,优化后加速度波形曲线均满足试验标准规定的容差,优于遗传算法。

Abstract

The ground impact test is an indispensable stage before aerospace equipments are put in service so that shock wave generator is one of the most important tool for the reappearance of impact loading. In order to solve the issues of low repetition accuracy and poor controllability of shock wave, a method for optimal parameter design of porous-type shock waveform generator is proposed. According to the flow characteristics of the damping hole and the stress state of the piston, the shock response calculation model of the test system is established, as well as its discrete calculation formulation. Taking into account that the subset simulation optimization algorithm has the advantage of fast convergence and avoiding getting trapped in a local optimal solution when facing high-dimensional complex optimization problems, the algorithm is used to seek the optimal discrete combinations of the number of damping holes in each row and compared with the genetic algorithm.The results show that, with different requirements, the optimized acceleration waveform curves meet the tolerance specified in the corresponding standard, which are better than those obtained from genetic algorithm.

关键词

冲击波形发生器 / 阻尼孔 / 加速度波形 / 子集模拟优化 / 遗传算法

Key words

Impact waveform generator / Damping hole / Acceleration waveform / Subset simulation optimization / Genetic algorithm

引用本文

导出引用
李凡, 李洪双. 基于子集模拟优化的冲击波形控制方法[J]. 振动与冲击, 2025, 44(6): 82-89
LI Fan, LI Hongshuang. Shock waveform control method based on subset simulation optimization[J]. Journal of Vibration and Shock, 2025, 44(6): 82-89

参考文献

[1] 杨强, 白春玉, 刘小川, 等. 特种冲击波形发生器设计与应用[J]. 航空科学技术, 2020,31(12): 48-54.
YANG Qiang, BAI Chun-yu, LIU Xiao-chuan, et al. Design and application of special shock wave generator [J]. Aeronautical Science & Technology, 2020, 31(12): 48-54.
 [2] 吕剑, 岳晓红, 黄含军. 利用数值方法模拟橡胶波形发生器生成半正弦冲击波[J]. 橡胶工业, 2018,55(1): 15-19.
LYU Jian, YUE Xiao-hong, HUANG Han-jun. Numerical simulation for half-sine pulse generated by rubber waveform generator [J]. China Rubber Industry, 2008, 55(1):15-19.
 [3] RITTWEGER A, ALBUS J, HORNUNG E, et al. Passive Damping Devices For Aerospace Structures[J]. Acta astronautica, 2002,50(10): 597-608.
 [4] 任佳, 刘小川, 杨建波, 等. 防雷座椅台架试验冲击波形模拟技术[J]. 科学技术与工程, 2020,33(20): 13673-13679.
REN Jia, LIU Xiao-chuan, YANG Jian-bo, et al. Waveform simulation technology for drop test of the mine protected seat [J]. Science Technology and Engineering, 2020,20(33):13673-13679.
 [5] Sujuan Jiao, Yu Wang, Lei Zhang, et al. shock wave characteristics of a hydraulic damper for shock test machine[J]. Mechanical Systems and Signal Processing, 2010(24): 1570-1578.
 [6] 丁凡, 路甬祥. 短笛型缓冲结构的高速液压缸缓冲过程的研究[J]. 中国机械工程, 1998,9(10): 52-54.
DING Fan, LU Yong-xiang. Research on buffering process of high speed hydraulic cylinder with Piccolo buffer structure [J]. China Mechanical Engineering, 1998, 9(10): 52-54.
 [7] 王贡献, 褚德英, 沈荣瀛, 等. 被动式液压冲击波形发生器动态特性的数学建模与仿真[J]. 振动与冲击, 2007,26(7): 63-68.
WANG Gong-xian, CHU De-ying, SHEN Rong-ying. Mathematical modeling and simulation of dynamic behavior of a passive hydraulic shock pulse generator [J]. Journal of Vibration and Shock, 2007,26(7):63-69.
 [8] 徐刚, 于治会. 大负荷长持续时间的跌落冲击台[J]. 试验技术与试验机, 2002,42(1): 23-26.
XU Gang, YU Zhi-hui. Drop impact table with large load and long duration [J]. Test Technology and Testing Machine, 2002, 42(1-2): 23-26.
 [9] 季鑫. 油阻尼半正弦波力脉冲成形器理论与应用[J]. 东南大学学报, 1994(5): 106-109.
JI Xin. Research on theory and application of oil-damping’s half-sine force pulse former [J]. Journal of Southeast University, 1994, 24(5): 106-109.
[10] 杨铭, 季馨, 高艳旭. 任意冲击脉冲波形发生器动态仿真研究[J]. 机械设计与制造工程, 2000(第6期): 75-77.
YANG Ming, JI Xin, GAO Yan-xu. Dynamic simulation study of arbitrary shock pulse waveform generator [J]. Machine Design and Manufacturing Engineering, 2000,(6): 75-77.
[11] GAO H, CHI M, DAI L, et al. Mathematical Modelling and Computational Simulation of the Hydraulic Damper during the Orifice-Working Stage for Railway Vehicles[J]. Mathematical problems in engineering, 2020,2020: 1-23.
[12] Routing Li, Gongfa Chen, Peng Liang. Modeling and Finite Element Analysis of the Hydraulic Buffer in Elevator Systems[J]. Journal of Civil Engineering Research, 2017,7(2): 63-66.
[13] DUYM S, STIENS R, REYBROUCK K. Evaluation of Shock Absorber Models[J]. Vehicle system dynamics, 1997,27(2): 109-127.
[14] 王成龙, 邱志伟, 曾庆良, 等. 基于模拟退火算法的多孔式液压缓冲器阻尼孔优化[J]. 液压与气动, 2019(第4期): 54-59.
WANG Cheng-long, QIU Zhi-wei, ZENG Qing-liang, et al. Optimization Based on Simulated Annealing for Damping Holes of Porous Hydraulic Buffer [J]. Chinese Hydraulics & Pneumatics, 2019,(4):54-59.
[15] 阳雄, 张锡文, 王学芳. 油压缓冲器的优化设计[J]. 液压与气动, 2003(4): 33-35.
YANG Xiong, ZHANG Xi-wen, WANG Xue-fang. The Optimizing Design Oil Shock Absorber [J]. Chinese Hydraulics & Pneumatics,2003,26(4):33—35.
[16] YIN W, YANG Y, WANG Z, et al. Parameters optimization of a hydraulic buffer system for belt arrestor in downward belt conveyors[J]. Mathematical and computational applications, 2016,21(4): 42.
[17] 马星国, 吴琼, 尤小梅, 等. 渐变节流液压缓冲器特性分析与结构优化[J]. 机床与液压, 2015(第19期): 100-104.
MA Xing-guo, GU Ting-ting, YOU Xiao-mei.Performance analysis and structural optimization of gradual throttling hydraulic buffer[J]. Machine Tool & Hydraulics, 2013, 41(17): 56—59.
[18] 孙爽. 多孔式液压缓冲器仿真与优化设计[D]. 大连理工大学, 2006.
SUN Shuang. Simulation and Optimum Design to the Multi-orifice Hydraulic Buffer [D]. Dalian: Dalian University of Technology, 2006.
[19] GJB150.18A-2009. 军用装备实验室环境试验方法[S]. 北京, 国防科学技术工业委员会, 2009.
GJB150.18A-2009. Environmental test methods for military equipments [S]. Beijing, COSTIND, 2009.
[20] GB2423.5-1995. 电工电子产品环境试验[S]. 北京, 电子工业部, 1995.
GB2423.5-1995. Environmental testing for electic and electronic products [S]. Beijing, Ministry of Electronic industry,1995.
[21] WAN J, CHEN B, WANG Q T. Sensitivity analysis of Repetitive Shock machine's vibration energy, 2012. 
[22] 马远卓. 子集模拟算法改进研究[D]. 南京航空航天大学, 2013.
Ma Yuan-zhuo. Study on the improvement of subset simulation algorithm [D]. Nanjing University of Aeronautics and Astronautics, 2013.
[23] LI H, AU S. Design optimization using Subset Simulation algorithm[J]. Structural safety, 2010,32(6): 384-392.
[24] Hong-Shuang Li. Subset simulation for unconstrained global optimization[J]. Applied Mathematical Modelling, 2011,35(10): 5108-5120.
[25] LI H, MA Y. Discrete Optimum Design for Truss Structures by Subset Simulation Algorithm[J]. Journal of aerospace engineering, 2015,28(4):04014091.
[26] AU S, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic engineering mechanics, 2001,16(4): 263-277.
[27] YUAN X K, LU Z Z, QIAO H W. Conditional probability Markov chain simulation based reliability analysis method for nonnormal variables[J]. Science China Technological Sciences, 2010,53(5): 1434-1441.

PDF(1649 KB)

Accesses

Citation

Detail

段落导航
相关文章

/