涌潮冲击桩柱体最大压强及最大载荷的计算方法

王旭1, 2, 屈科1, 2 杨元平2, 3, 王超1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 90-103.

PDF(2453 KB)
PDF(2453 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (6) : 90-103.
冲击与爆炸

涌潮冲击桩柱体最大压强及最大载荷的计算方法

  • 王旭1,2,屈科*1,2,杨元平2,3,王超1
作者信息 +

Computational method for the maximum pressure and maximum load on tidal bores impact pile columns

  • WANG Xu1,2,QU Ke*1,2,YANG Yuanping2,3,WANG Chao1
Author information +
文章历史 +

摘要

涌潮是一种蕴含着巨大能量的特殊强非线性间断流,因此涌潮区域内桥墩等桩柱体建筑物会受到极大的涌潮冲击力,可能会对桩柱体等涉水结构造成严重毁坏。基于开源程序OpenFOAM和wave2Foam构建高精度涌潮数值水槽,求解雷诺平均的Navier-Stokes方程。首先,进行高精度涌潮数值水槽计算涌潮传播、演变及与桩柱体相互作用的能力。然后,数值计算涌潮与桩柱体相互作用过程中涌潮传播、演变、及桩柱体结构动力响应特性的变化规律,并阐明不同形态涌潮与桩柱体发生相互作用时涌潮复杂水动力特性机理。系统分析不同涌潮高度、潮前水深、桩柱体斜置角度和作用方向对涌潮水动力载荷和最大冲击压强的影响。结果表明:涌潮与桩柱体发生相互作用时,涌潮最大水动力载荷和最大冲击压强随着涌潮高度的增加显著增加,呈现出线性增大趋势;波状涌潮和弱旋滚涌潮的最大水动力载荷和最大冲击压强随潮前水深的增大而增大,然而强漩滚涌潮冲击桩柱体时的最大水动力载荷和最大冲击压强随潮前水深的变化没有明显增大的趋势;涌潮冲击桩柱体过程中,相比垂直桩柱体涌潮对正向斜置桩柱体作用的水动力载荷较小,且最大冲击压强的大小也因桩柱体的斜置发生了明显的减小现象。基于对涌潮最大水动力载荷和最大冲击压强数据结果进行系统整理,结合理论特性分析,提出适合不同形态涌潮冲击桩柱体时的最大水动力载荷和涌潮最大冲击压强的理论计算公式。为强潮区域桥梁基础结构的设计提供参考意义。

Abstract

Based on the open source programs OpenFOAM and wave2Foam, we construct a high-precision numerical flume to solve the Reynolds-averaged Navier-Stokes equations. First, a high-precision tidal bore numerical flume is carried out to calculate the tidal bore, propagation, evolution, and the ability to interact with pile and column bodies. Then, we numerically calculate the change rules of surge propagation, evolution, and structural dynamic response characteristics of the pile column during the interaction between the tidal bore, and the pile column, and elucidate the complex hydrodynamic characteristics of the tidal bore, when it interacts with the pile column in different forms. Systematically analyze the influence of different tidal bore, heights, pre-tidal water depths, inclined angle and direction of the pile body on the hydrodynamic load and maximum impact pressure of the tidal bore,. Finally, based on the systematic collation of the maximum hydrodynamic load and maximum impact pressure, combined with the theoretical characterization, the theoretical calculation formulas of the maximum hydrodynamic load and maximum impact pressure are proposed to be suitable for the tidal bore, impacting on the pile columns in different forms.

关键词

涌潮 / 桩柱体 / 水动力特性 / 理论分析 / wave2Foam

Key words

Tidal bore / bridge pile / Hydrodynamic properties;theoretical analysis / wave2Foam

引用本文

导出引用
王旭1, 2, 屈科1, 2 杨元平2, 3, 王超1. 涌潮冲击桩柱体最大压强及最大载荷的计算方法[J]. 振动与冲击, 2025, 44(6): 90-103
WANG Xu1, 2, QU Ke1, 2, YANG Yuanping2, 3, WANG Chao1. Computational method for the maximum pressure and maximum load on tidal bores impact pile columns[J]. Journal of Vibration and Shock, 2025, 44(6): 90-103

参考文献

[1]. 戚蓝, 肖厅厅, 张芝永, 黄君宝, 2019. 涌潮水流CFD数值模拟[J]. 水利水运工程学报,(03):32-40. Qi Lan, Xiao Tingting, Zhang Zhiyong, et al, 2019. Numerical simulation of tidal bore based on CFD method[J]. Journal of Water Resources and Water Transport Engineering,(3):32-40.
[2]. 林炳尧,2008. 钱塘江涌潮的特性[M].北京: 海洋出版社: 87,130. Lin Bingyao, 2008. Characteristics of Qiantang River tide[M]. Beijing: Ocean Press: 87,130. ( in Chinese)
[3]. 黄静, 潘存鸿, 陈刚, 匡翠萍, 李红燕, 2013. 涌潮的水槽模拟及验证[J]. 水利水运工程学报,(2):1-8. Huang Jing, Pan Cunhong, Chen Gang, et al, 2013. Experimental simulation and validation of the tidal bore in the flume[J]. Journal of Water Resources and Water Transport Engineering, (2):1-8.
[4]. 潘存鸿, 鲁海燕, 曾剑, 2008. 钱塘江涌潮特性及其数值模拟[J].水利水运工程学报,(2):1-9. Pan Cunhong, Lu Haiyan, Zeng Jian, 2008. Characteristic and numerical simulation of tidal bore in Qiantang River[J].Journal of Water Resources and Water Transport Engineering, (2):1-9.
[5]. Chanson, H. Tidal bores, aegir, eagre, mascaret, pororoca: Theory and observations [M]. World Scientific, 2012.
[6]. Tu J, Fan D. Flow And Turbulence Structure in a Hypertidal Estuary with The World's Biggest Tidal Bore [J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3417-3433.
[7]. 邵卫云,毛根海,刘国华.钱塘江涌潮压力的分析与研究[J].水动力学研究与进展(A辑),2002(05):604-610. Shao Weiyun, Mao Genhai, Liu Guohua. Analysis of pressure in Qian-Tangjiang tidal bores[J]. Hydrodynamics Research and Progress(Series A),2002(05):604-610. 
[8]. 沈跃军, 陈振华, 张开伟, 等. 钱塘江鱼鳞石塘涌潮作用力动态测试与分析 [J]. 水利水运工程学报, 2013, 6: 81-87. Shen Yuejun, Chen Zhenhua, Zhang Kaiwe, et al. Dynamic measurement and analysis of bore pressure on the ancient seawall in Qiantang River [J]. Hydro-science And Engineering, 2013, 6: 81-87.
[9]. 李颖, 潘冬子, 潘存鸿. 强潮河口桥墩涌潮压力试验研究 [J]. 海洋工程, 2017, 35(4): 53-58. Li Ying, Pan Dongzi, Pan Cunhong. Experimental study of tidal bore-induced pressures on piers in a macro-tidal estuary [J]. The Ocean Engineering, 2017, 35(4): 53-58.
[10]. 曾剑, 孙志林, 熊绍隆. 钱塘江河口建桥对涌潮的影响研究 [J]. 浙江大学学报(工学版), 2006, (09): 1574-1577+1637.Zeng Jian, Sun Zhilin, Xiong Shaolong. Effect of bridge engineering on tidal bore in Qiantang estuary [J]. Journal of ZheJiang University (Engineering Science), 2006, (09): 1574-1577+1637.
[11]. 杨火其,卢祥兴,周建炯.涌潮对垂直方桩正向作用力试验研究[J].水电能源科学,2008(03):118-119+20. Yang Huoqi, Lu Xiangxing, Zhou Jianjiong. Laboratory study for tidal bore acting force on vertical square cylinders[J]. Hydropower Energy Science, 2008(03):118-119+20.
[12]. St-Germain P, Nistor I, Townsend R, et al. Smoothedparticle hydrodynamics numerical modeling of structures impacted by tsunami bores [J]. Journal of Waterwa, Port, Coastal, and Ocean Engineering, 2014, 140(1): 66-81.
[13]. 林一楠,何昆,孙逸豪.桥墩的涌潮压力特性试验研究[J].水电能源科学,2020,38(10):83-85. Lin Yinan, He Kun, Sun Yihao. Study on the Effect of Tidal Bore Pressure on Piers[J]. Hydroelectric Energy Science, 2020,38 (10): 83-85.
[14]. 陈刚,何昆,杨元平等,2020. 强涌潮对桥墩墩身作用力试验研究[J].浙江水利科技,48(4):20-23+32. Chen Gang, He Kun, Yang Yuanping,2020. Experimental Research on Force of Strong Tidal Bore on a Bridge Tier Body[J]. Zhejiang Water Conservancy Science and Technology, 48(4):20-23+32.
[15]. 张芝永,肖厅厅,戚蓝等, 2020.涌潮水流作用下桩柱表面压强及受力分析[J].天津大学学报(自然科学与工程技术版),53(6):573-581. Zhang Zhiyong,Xiao Tanghuang,Qi Lan et al,2020. Analysis of the surface pressure and force of piles under tidal bore[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition),53(6):573-581.
[16]. Sarfaraz M, Pak A. SPH Numerical Simulation of Tsunami Wave Forces Impinged on Bridge Superstructures [J]. Coastal Engineering, 2017,121:145-157.
[17]. Li J, Liu H, Tan S K, 2010. Lagrangian modeling of tidal bores passing through bridge piers[J]. Journal of Hydrodynamics, 22(1): 496-502.
[18]. Lubin P, Chanson H, Glockner S. Large Eddy Simulation of Turbulence Generated by a Weak Breaking Tidal Bore [J]. Environmental Fluid Mechanics, 2010, 10(5): 587-602.
[19]. Lubin P, Glockner S, Chanson H. Numerical Simulation of a Weak Breaking Tidal Bore [J]. Mechanics Research Communications, 2010, 37(1): 119-121.
[20]. Viero D, Peruzzo P, Defina A. Positive Surge Propagation in Sloping Channels [J]. Water, 2017, 9(7): 518.
[21]. 潘存鸿, 鲁海燕, 曾剑. 钱塘江涌潮特性及其数值模拟[J]. 水利水运工程学报, 2008, 2: 1-9. Pan Cunhong, Lu Haiyan, Zeng Jian. Characteristic and numerical simulation of tidal bore in Qian tang River [J]. Hydro-science And Engineering, 2008, 2: 1-9.
[22]. Chen L, Zang J, Hillis A, et al. Numerical investigation of wave–structure interaction using OpenFOAM [J]. Ocean Engineering. 2014, 88, 91–109.
[23]. MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598–1605.
[24]. Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. computational physics, 1981, 39, 201-225.
[25]. Jacobsen N G, Fuhrman D R, Fredsøe J. A wave generation toolbox for the open-source CFD library: OpenFoam® [J]. International Journal for numerical methods in fluids, 2012, 70(9): 1073-88
[26]. Zhang Z Y, Pan C H, Zeng J, et al. Hydrodynamics of tidal bore overflow on the spur dike and its influence on the local scour [J]. Ocean Engineering, 2022, 266, 113140.
[27]. Warner J C, Geyer W R, Lerczak J A. Numerical modeling of an estuary: A comprehensive skill assessment [J]. Journal of Geophysical Research: Oceans, 2005, 110(C5).
[28]. Willmott C J. On the validation of models [J]. Physical geography, 1981, 2(2): 184-194.
[29]. 杨元平, 张芝永, 李最森, 等. 跨海桥梁基础冲刷特征研究 [J]. 水利水运工程学报, 2021, (4): 131-137. Yang Yuanping, Zhang Zhiyong, Li Zuiseng, et al. Scour features of sea-crossing bridge piers [J]. Hydro-science And Engineering, 2021, (4): 131-137
[30]. GODA Y, HARANAKA Sand, KITAHATA M. Study on impulsive breaking wave force son piles [J].Report Port and Harbour Technical Research Institute, 1966, 6(5): 1-30.(in Japanese)
[31]. Bukreev V I, Zykov V V. Bore Impact on A Vertical Plate [J]. Journal of Applied Mechanics and Technical Physics, 2008, 49(6): 926-933.
[32]. Wienke J, Oumeraci H. Breaking Wave Impact Force on A Vertical and Inclined Slender Pile - Theoretical and Large-Scale Model Investigations [J]. Coastal Engineering, 2005, 52(5): 435-462.
[33]. Arntsen O A, Collados X R, Torum A. Impact Forces on A Vertical Pile from Plunging Breaking Waves [C]. Singapore, World Scientific Publishing Co Pte Ltd, 2013.
[34]. Sawaragi T, Nochino M. Impact Forces of Nearly Breaking Waves on A Vertical Circular Cylinder [J]. Coastal Engineering Journal, 1984, 27: 249-263.
[35]. 陈海军, 严盛, 徐长节, 等. 直立方桩上涌潮压力动态测试及分析研究 [J]. 水动力学研究与进展(A辑), 2006(03): 411-417. Chen Haijun, Yan Sheng, Xu Changjie, et al. Dynamic measurement and study of the bore pressure on a vertical square cylinder in Qian-tang River [J]. Hydro-science And Engineering, 2006(03): 411-417.

PDF(2453 KB)

446

Accesses

0

Citation

Detail

段落导航
相关文章

/