基于扫频激励试验平台评估扣件减振性能试验研究

张欢1, 贺志文1, 杜香刚2, 3, 肖俊恒1, 王志伟1, 陈晨1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 1-7.

PDF(2092 KB)
PDF(2092 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 1-7.
振动理论与交叉研究

基于扫频激励试验平台评估扣件减振性能试验研究

  • 张欢1,贺志文1,杜香刚2,3,肖俊恒*1,王志伟1,陈晨1
作者信息 +

Test study on evaluating vibration reduction performance of fastener based on sweep frequency excitation test platform

  • ZHANG Huan1, HE Zhiwen1, DU Xianggang2,3, XIAO Junheng*1, WANG Zhiwei1, CHEN Chen1
Author information +
文章历史 +

摘要

城市轨道交通中针对扣件系统减振性能评估,尚无完备的试验评估体系。基于扫频激励试验平台,根据现场实测数据和调研分析等资料确定了扣件的减振性能评估试验方法,可分频分级评估扣件的减振性能。试验方法确定了扫频范围为10~1 000 Hz、扫频量级为1 m/s2和扫频速度为05 oct/min等关键试验参数,并开展了不同维度的减振性能对比试验研究,分频振级曲线显示三种扣件的基础垂向加速度振级与扣件刚度基本呈正相关;不同轴重作用下试验扣件在10~160 Hz内基础Z振级分频插入损失均为正,且与刚度基本呈正相关;结合基础最大Z振级插入损失的评价指标,14 t轴重工况下,A型扣件插入损失为98 dB,B型扣件插入损失为71 dB;17 t轴重工况下,A型扣件插入损失为99 dB,B型扣件插入损失为69 dB,两种轴重工况下试验扣件的插入损失相当,轴重作用影响不大,且试验扣件插入损失与厂家宣称减振效果基本一致。现场测试的A型扣件和B型扣件隧道壁Z振级最大值VLzmax减振效果与扫频激励试验结果基本一致,进一步验证了扫频激励试验方法的合理性。

Abstract

There is currently no complete test evaluation system for evaluating vibration reduction performance of fastening in urban rail transit. Here, based on a sweep frequency excitation test platform, according to on-site measured data and investigation and analysis data, the vibration reduction performance evaluation test method of fastener was determined. Vibration reduction performance of a fastener could be evaluated with frequency division and grading. The test method was used to determine key test parameters of the sweep frequency range of 10-1 000 Hz, the sweep frequency magnitude grade of  1 m/s2, and the sweep frequency speed of 0.5 oct/min, and conduct contrastive test studies on vibration reduction performance in different dimensions. Frequency division vibration level curves showed that base vertical acceleration vibration levels of 3 types of fasteners are basically positively correlated with their fastener stiffnesses; under different axle loads, insertion losses of test fasteners within the range of 10-160 Hz are positive for their bases of Z-level frequency division, and are basically positively correlated with their stiffness; combined with evaluation indexes of the maximum base Z-level insertion losses, under 14 t axle load condition, insertion loss of A-type fasteners is 9.8 dB, and insertion loss of B-type fasteners is 7.1 dB, under 17 t axle load condition, insertion loss of A-type fasteners is 9.9 dB, and insertion loss of B-type fasteners is 6.9 dB, insertion losses of test fasteners under the two axle load conditions are equivalent, and effects of axle load are not large, insertion losses of tested fasteners are basically consistent with the manufacturer’s claimed vibration reduction effects; vibration reduction effects of tunnel wall Z-level maximum values VLzmax measured on-site when using A-type and B-type fasteners are basically consistent with sweep frequency excitation test results to further verify the rationality of sweep frequency excitation test method.

关键词

城市轨道交通 / 减振性能 / 分频分级 / 扣件 / 扫频激励

Key words

urban rail transit / vibration reduction performance / frequency division and grading / fastener / sweep frequency excitation

引用本文

导出引用
张欢1, 贺志文1, 杜香刚2, 3, 肖俊恒1, 王志伟1, 陈晨1. 基于扫频激励试验平台评估扣件减振性能试验研究[J]. 振动与冲击, 2025, 44(7): 1-7
ZHANG Huan1, HE Zhiwen1, DU Xianggang2, 3, XIAO Junheng1, WANG Zhiwei1, CHEN Chen1. Test study on evaluating vibration reduction performance of fastener based on sweep frequency excitation test platform[J]. Journal of Vibration and Shock, 2025, 44(7): 1-7

参考文献

[1]VILLOT M, AUGIS E, GUIGOU-CARTER C, et al. Vibration emission from railway lines in tunnel-characterization and prediction [J]. International Journal of Rail Transportation, 2016, 4(4): 208-228.
[2]刘维宁,马蒙,刘卫丰,等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,
 2016, 46(6): 547-559.
LIU Weining, MA Meng, LIU Weifeng, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China [J]. Scientia Sinica Technologica, 2016, 46(6): 547-559.
[3]ZHU S Y, WANG J W, CAl C B, et al. Development of avibration attenuation track at low frequencies for urban rail transit [J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32: 713-726.
[4]夏禾,曹艳梅. 轨道交通引起的环境振动问题[J]. 铁道科学与工程学报, 2004, 1(1): 44-51.
XIA He, CAO Yanmei. Problem of railway traffic induced vibrations of environments [J]. Journal of Railway Science and Engineering, 2004, 1(1): 44-51.
[5]AUERSCH L. Realistic axle-load spectra from ground vibrations measured near railway lines [J]. International Journal of Rail Transportation, 2015, 3(4): 180-200.
[6]HASSAN O A B. Train-induced groundborne vibration and noise in buildings [M]. Essex: Multi-Seience Publishing Co., Ltd., 2006.
[7]赵宁宁,张欢,崔道金,等. 城市轨道交通WJ-18B型减振扣件研发及应用[J]. 铁道建筑, 2022, 62(5): 67-70.
ZHAO Ningning, ZHANG Huan, CUI Daojin, et al. Research development and application of WJ-18B type damping fasteners for urban rail transit [J]. Railway Engineering, 2022, 62(5): 67-70.
[8]杭锦,王金朝,王志强. 扣件刚度对钢轨振动特性的影响研究[J]. 都市快轨交通, 2020, 33(1): 91-97.
HANG Jin, WANG Jinzhao, WANG Zhiqiang. Influence of fastener stiffness on vibration characteristics of rails [J]. Urban Fast Rail Transit, 2020, 33(1): 91-97.
[9]赵汝康.铁路钢轨扣件[M].北京:中国铁道出版社, 2018.
[10]王鹏. 地铁三种扣件减振性能研究[D].成都:西南交通大学, 2016.
[11]唐吉意, 罗雁云, 林龙锋,等. 落轴冲击下椭圆形支承块式轨道振动特性研究[J]. 机械设计与制造工程, 
2017, 46(7): 86-90.
TANG Jiyi, LUO Yanyun, LIN Longfeng, et al. Research on vibration characteristics of elliptical support block track under wheel load drop [J]. Machine Design and Manufacturing Engineering, 2017, 46(7): 86-90.
[12]耿传智, 王伟鹏. 地铁弹性扣件减振性能的落轴冲击仿真分析[J]. 振动与冲击, 2010, 29(3): 113-117.
GENG Chuanzhi, WANG Weipeng. Simulation on vibration reduction performance of different subway elastic fasteners under wheel load drop [J]. Journal of Vibration and Shock, 2010, 29(3): 113-117.
[13]刘海涛, 肖俊恒, 许良善,等. 轨道结构落锤冲击的数值模拟方法[J]. 中国铁道科学, 2014, 35(2): 14-19.
LIU Haitao, XIAO Junheng, XU Liangshan, et al. Numerical simulation method for track structure under drop impact [J]. China Railway Science, 2014, 35(2): 14-19.
[14]赵俊康. 轨道交通新型中等减振扣件的技术研究[D].上海: 上海工程技术大学, 2020.
[15]冉蕾,马佳骏,孙井林,等. 上盖开发车辆段库内轨道高等级减振扣件研发及应用[J]. 铁道勘察, 2020, 46(3): 146-150.
RAN Lei, MA Jiajun, SUN Jinglin, et al. Development and application of high-grade vibration-absorbing fasteners for rail track in internal line of depot with property development [J]. Railway Investigation and Surveying, 2020, 46(3): 146-150.
[16]罗伟, 李秋义, 张世杰,等. 温州市域铁路S1线减振扣件减振性能试验研究[J]. 铁道标准与设计, 2022, 66(5): 73-77.
LUO Wei, LI Qiuyi, ZHANG Shijie, et al. Experimental study on the vibration reduction performance of damper fasteners used in Wenzhou suburban railway line S1[J].Railway Standard Design, 2022, 66(5): 73-77.
[17]王平, 唐剑, 杨鹏,等. GJ-Ⅲ减振扣件轨道对轨道交通高架段环境噪声的影响分析[J]. 铁道标准设计, 2017, 61(3): 4-9.
WANG Ping, TANG Jian, YANG Peng, et al. Analysis of the influence of GJ-Ⅲ fastener vibration damping track on environment noise of metro viaduct section [J].Railway Standard Design, 2017, 61(3): 4-9.
[18]董继阳. 扫频激振测试在车下设备振动试验中的应用[J]. 中文科技期刊数据库(文摘版)工程技术, 2024, 5: 15-19.
DONG Jiyang. Application of sweep frequency excitation testing in vibration testing of equipment under vehicles [J]. Chinese Science and Technology Journal Database (Abstract Edition) Engineering Technology, 
2024, 5: 15-19.
[19]唐炜, 史忠科. 扫频激励下的飞机颤振模态参数小波辨识研究[J]. 振动与冲击, 2009, 28(2): 172-176.
TANG Wei, SHI Zhongke. Research on wavelet identification of aircraft flutter modal parameters under sweep frequency excitation [J]. Journal of Vibration and Shock, 2009, 28(2): 172-176.
[20]国家环境保护局. 城市区域环境振动标准:GB 10070—1988 [S].北京:中国环境科学出版社, 1988.
[21]国家环境保护局. 城市区域环境振动测量方法:GB 10071—1988 [S].北京:中国环境科学出版社, 1988.
[22]中华人民共和国住房和城乡建设部. 城市轨道交通引起建筑物振动与二次辐射噪声限值及其测量方法标准:JGJ/T 170—2009 [S].北京:中国建筑工业出版社, 2009.
[23]全国机械振动与冲击标准化技术委员会. 机械振动与冲击 人体暴露于全身振动的评价 第1部分 一般要求:GB/T 134411—2007 [S].北京:中国标准出版社, 2007.
[24]中华人民共和国住房和城乡建设部. 浮置板轨道技术规范:CJJ/T 191—2012 [S].北京:中国建筑工业出版社, 2013.
[25]地铁运营技术研发中心. 北京地铁A型扣件试验段振动加速度、钢轨动态变形、轮轨力测试报告[R].北京:北京地铁运营有限公司, 2021.
[26]刘鹏辉, 董振生, 王一干, 等. 国内地铁减振措施现场动态测试报告[R].北京:铁科检测有限公司, 2020.

PDF(2092 KB)

Accesses

Citation

Detail

段落导航
相关文章

/