针对低频线谱振动隔离,提出了一种波纹管液力惯容性动力反共振隔振装置,该装置以波纹管结构作为弹性支撑及密封元件,并附加有水平波纹管及端部惯性质量子系统,整个装置呈现出动力反共振隔振特性。首先,建立了波纹管液力惯容动力反共振隔振系统的动力学方程,分别推导了在力与位移激励作用下的振动传递率,并通过无量纲化参数分析研究了惯性质量比、有效面积比、阻尼比及惯容子系统数量四个绝对量对传递率特性的刻化。结果表明:惯性质量比和有效面积比的增加及惯容子系统数量的减少会降低隔振系统的反共振频率,起到调频作用,而阻尼比仅对共振与反共振的峰值大小起到调控作用。继而对于给定系统参数,通过数值仿真分析阐释了系统在反共振频率点处隔振效能最优的力学机理,证实在反共振频率处主支撑波纹管的弹性恢复力与内部油液脉动压力对基础的作用力大小相等,方向相反,合力为零。本文工作为波纹管液力惯容装置的应用设计提供理论基础。
Abstract
To achieve the low-frequency line spectrum vibration isolation, the bellows-type hydraulic inerter-based dynamic anti-resonance vibration isolation (DAVI) device is proposed. The device uses the bellows structure as the elastic support and sealing element, and the additional horizontal bellows and the inertial mass at the end form an inerter subsystem. The entire device exhibits dynamic anti-resonance vibration isolation characteristics. Firstly, the dynamic equation of the proposed DAVI system was established, and the vibration transmissibility under both of force and displacement excitation was derived. The characterization of the transmissibility characteristics by the absolute parameters of the inertance mass ratio, effective area ratio, damping ratio and the quantity of inerter subsystems was studied through non-dimensional parameter analysis. The results show that the increase of the inertance mass ratio and effective area ratio, and the decrease of the number of inertial subsystems will reduce the anti-resonance frequency of the isolation system, which plays a role in frequency modulation, while the damping ratio only plays a regulating role in the peak value of resonance and anti-resonance. Furthermore, for given system parameters, the mechanics mechanism of the optimal vibration isolation efficiency at the anti-resonance frequency point was explained through the numerical simulation analysis. It confirms that at the anti-resonance frequency, the elastic restoring force of the primary supporting bellows and the internal hydraulic pulsation pressure on the base have the same magnitude but opposite direction, resulting in a net force of zero. This work provides a theoretical basis for the application design of the bellows hydraulic inerter-based DAVI device.
关键词
惯容 /
动力反共振 /
隔振 /
准零刚度 /
波纹管
{{custom_keyword}} /
Key words
inerter /
dynamic anti-resonance /
vibration isolation /
quasi-zero stiffness /
bellows
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张赣波, 赵耀. 反共振双层隔振系统分析[J]. 振动与冲击, 2022, 41(15): 29-35.
[2] Braun D. Vibration isolator particularly of the antiresonance force type [P]. US19820426641,1988.
[3] Rita A D, Mcgarvey J H, Jones R. Helicopter Rotor Isolation Evaluation Utilizing the Dynamic Antiresonant Vibration Isolator[J]. Journal of the American Helicopter Society, 1976, 23(1):22.
[4] 张赣波,赵耀.动力反共振液压浮筏的隔振特性分析[J]. 中国造船, 2020, 61(03): 33-46.
[5]邓景辉. 组合式液弹隔振器传递特性分析及试验研究[J]. 西北工业大学学报, 2022, 40(01): 182-188.
[6] 游晶越. 纵向共振转换器推力轴承对船体结构振动噪声的影响研究[D]. 华中科技大学, 2020.
[7]周俊辉, 陈前, 李方硕. 一种新型双腔隔振器动力学特性仿真与试验研究[J]. 噪声与振动控制, 2017, 37(02): 173-177.
[8] Li F S, Chen Q, Zhou J H. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator[J]. Journal of Sound and Vibration, 2016(374): 61-76.
[9] 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10):8-27.
[10] 谭德昕, 刘献栋, 单颖春. 惯容器在车辆减振系统中的应用研究综述 [J].汽车工程学报, 2011, 1(05): 342-347.
[11]朱翔, 殷学吉, 李天匀,等. 基于惯容器的动力反共振隔振器隔振特性分析[J]. 哈尔滨工程大学学报, 2016, 37(10): 1318-1322.
[12] Miriam Chillemi, Thomas Furtmüller, Christoph Adam, et al. Nonlinear mechanical model of a fluid inerter[J]. Mechanical Systems and Signal Processing, 2023(188):109986.
[13] 高雪. 一类液固混合介质隔振系统的非线性动力学行为与设计方法研究[D]. 南京航空航天大学, 2014.
[14] 张赣波,赵耀,张晓东. 三元件“惯容-弹簧”反共振隔振器隔振特性分析[J]. 哈尔滨工程大学学报, 2021, 42(06): 766-772.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}