考虑恢复过程的桥梁抗震韧性评估方法

李廷辉1, 2, 3, 刘金龙4, 5, 李晓丽1, 2, 3, 王燕1, 2, 3, 计静1, 2, 3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 132-145.

PDF(5934 KB)
PDF(5934 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 132-145.
土木工程

考虑恢复过程的桥梁抗震韧性评估方法

  • 李廷辉1,2,3,刘金龙*4,5,李晓丽1,2,3,王燕1,2,3,计静1,2,3
作者信息 +

Aseismic resilience evaluation method of bridge considering recovery process

  • LI Tinghui1,2,3, LIU Jinlong*4,5, LI Xiaoli1,2,3, WANG Yan1,2,3, JI Jing1,2,3
Author information +
文章历史 +

摘要

提出了一种考虑恢复过程的混凝土桥梁结构抗震概率韧性评估方法,该方法基于暴露在恶劣环境下的混凝土结构生命周期分析的一般方法,以各破坏状态下的时变抗震能力作为功能指标,将灾害发生后残余功能和恢复过程与地震事件发生的时间联系起来。通过对时变桥梁易损性模型进行抽样获得桥梁地震破坏样本,结合时变功能指标,采用遗传算法(GA)解决资源约束调度问题(RCPSP),给出了桥梁震后的具体恢复过程,最终得到了桥梁结构服役期间的抗震韧性。结果发现,当不考虑时变功能时,计算得到的桥梁抗震韧性要明显大于考虑时变功能计算得到的抗震韧性,这样会高估桥梁抵抗地震灾害及从中恢复的能力,不利于震后恢复工作的展开。选取的控制时间(th-t0)要合理,如果使控制时间(th-t0)过小,计算得到的桥梁抗震韧性普遍为0,此时就不能很好的表达桥梁的抗震韧性。

Abstract

Based on the general method of life cycle analysis of concrete structures exposed to harsh environment, this method takes the time-varying seismic capability of each failure state as the functional index, and connects the residual function and recovery process after the disaster with the time of the earthquake event. By sampling the time-varying bridge fragility model to obtain the bridge earthquake failure samples, combined with the time-varying function index, the genetic algorithm is used to solve the resource-constrained project scheduling problem, the specific recovery process of the bridge after the earthquake is given, and finally the seismic resilience of the bridge during service is obtained. The results show that when the time-varying function is not considered, the calculated seismic resilience of the bridge is significantly greater than that of the bridge considering the time-varying function, which will overestimate the ability of the bridge to resist and recover from the earthquake, which is not conducive to the development of the post-earthquake restoration work. The selected control time (th-t0) should be reasonable. If the control time (th-t0) is too small, the calculated seismic resilience of the bridge is zero universally, and the seismic resilience of the bridge cannot be well express.

关键词

时变功能 / 抗震韧性 / 遗传算法 / 资源约束调度问题

Key words

time-varying function / seismic resilience / genetic algorithm / resource-constrained project scheduling problem

引用本文

导出引用
李廷辉1, 2, 3, 刘金龙4, 5, 李晓丽1, 2, 3, 王燕1, 2, 3, 计静1, 2, 3. 考虑恢复过程的桥梁抗震韧性评估方法[J]. 振动与冲击, 2025, 44(7): 132-145
LI Tinghui1, 2, 3, LIU Jinlong4, 5, LI Xiaoli1, 2, 3, WANG Yan1, 2, 3, JI Jing1, 2, 3. Aseismic resilience evaluation method of bridge considering recovery process[J]. Journal of Vibration and Shock, 2025, 44(7): 132-145

参考文献

[1] Bocchini P, Dan M F. Optimal Resilience-and Cost-Based Postdisaster Intervention Prioritization for Bridges along a Highway Segment[J]. Journal of Bridge Engineering, 2012, 17(1):117-129.
[2] Karamlou A, Bocchini P. Sequencing algorithm with multiple-input genetic operators: Application to disaster resilience[J]. Engineering Structures, 2016, 117(Jun.15):591-602.
[3] Decò A, Bocchini P, Dan M F. A probabilistic approach for the prediction of seismic resilience of bridges[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(10):1469-1487.
[4] Biondini F, Camnasio E, Titi A. Seismic resilience of concrete structures under corrosion[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(14).
[5] 林庆利,林均岐,刘金龙. 汶川地震公路桥梁易损性研究[J]. 振动与冲击, 2017, 36(4): 110-118
LIN Qingli,LIN Junqi,LIU Jinlong. A study on the fragility of highway bridges in the Wenchuan earthquake[J]. Journal of Vibration and Shock, 2017, 36(4): 110-118
[6] 李辉辉,李立峰. 考虑变量相关性的桥梁时变地震易损性研究[J]. 振动与冲击, 2019, 38(9): 173-183
LI Huihui, LI Lifeng. Bridge time-varying seismic fragility considering variables correlation[J]. Journal of Vibration and Shock, 2019, 38(9): 173-183
[7] 祝柏杨,刘金龙,林均岐. 基于信息度量的地震动参数优化选择方法[J]. 振动与冲击, 2024, 43(15): 86-94
ZHU Boyang1,2, LIU Jinlong1,2, LIN Junqi1,2. Optimization selection method for intensity measures based on information metrics[J]. Journal of Vibration and Shock, 2024, 43(15): 86-94
[8] 吕大刚,刘洋,于晓辉.第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J].工程力学, 2019, 36(9):1-11.
Lu Da-gang, Liu Yang, Yu Xiao-hui. Seismic Fragility Models and Forward-Backward Probabilistic Risk Analysis in Second-Generation Performance-Based Earthquake Engineering[J]. Engineering Mechanics, 2019, 36(9): 1-11,24.
[9] Liu Y, Lu D, Paolacci F. Analytical Probabilistic Resilience Estimation For Bridges Under Near-Fault Earthquakes [J].8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering, 2021.
[10] Liu Y, Mei Z, Lu D G, et al. Seismic risk and resilience assessment of composite bridges using hybrid fragility[M] Bridge maintenance, safety, management, life-cycle sustainability and innovations. CRC Press, 2021: 3177-3183.
[11] Chang S E, Shinozuka M. Measuring improvements in the disaster resilience of communities[J]. Earthquake Spectra, 2004, 20(3):739-755.
[12] Bruneau M, Reinhorn A. Exploring the concept of seismic resilience for acute care facilities[J]. Earthquake Spectra, 2007, 23(1).
[13] Cimellaro GP, Reinhorn AM, Bruneau M. Seismic resilience of a hospital system. Structure and Infrastructure Engineering 2010; 6(1–2):127–144.
[14] Bocchini P, Frangopol D M. Restoration of Bridge Networks after an Earthquake: Multicriteria Intervention Optimization[J]. Earthquake Spectra, 2012, 28(2):426-455.
[15] Karamlou A, Bocchini P. From Component Damage to System-Level Probabilistic Restoration Functions for a Damaged Bridge[J]. Journal of Infrastructure Systems, 2016:04016042.
[16] Biondini, Fabio, Camnasio, et al. Lifetime seismic performance of concrete bridges exposed to corrosion[J]. Structure & Infrastructure Engineering: Maintenance, Management, Life-Cycl, 2014,10(7):880–900.
[17] Biondini F, Palermo A, Toniolo G. Seismic performance of concrete structures exposed to corrosion: Case studies of low-rise precast buildings[J]. Structure and Infrastructure Engineering, 2011, 7(1-2):109-119.
[18] Li T, Lin J, Liu J. Analysis of time-dependent seismic fragility of the offshore bridge under the action of scour and chloride ion corrosion[J]. Structures, 2020, 28:1785-1801.
[19] UN/ISDR. Global assessment report on disaster risk reduction. United Nations International Strategy for Disaster Reduction, Geneva, Switzerland, 2009.
[20] Camnasio E. Lifetime performance and seismic resilience of concrete structures exposed to corrosion. PhD Thesis, Politecnico di Milano, Milan, Italy, 2013.
[21] 李廷辉. 环境侵蚀条件下简支梁桥地震易损性及抗震韧性分析[D].中国地震局工程力学研究所,2023.
Li Ting-hui. Analysis of seismic fragility and seismic resilience of Simple Supported Beam Bridges under environmental erosion conditions[D]. Institute of Engineering Mechanics, CEA, 2023.
[22] Nielson B G, Desroches R. Seismic fragility methodology for highway bridges using a component level approach[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(6):823-839.
[23] Moschonas I F, Kappos A J, Panetsos P, et al. Seismic fragility curves for greek bridges: methodology and case studies[J]. Bulletin of Earthquake Engineering, 2009, 7(2):439.
[24] Ghosh J, Padgett J E. Aging Considerations in the Development of Time-Dependent Seismic Fragility Curves[J]. Journal of Structural Engineering, 2010, 136(12):1497-1511.
[25] Karamlou A, Bocchini P. Functionality‐fragility surfaces[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(10): 1687-1709.
[26] Ghosh J, Padgett J E. Aging Considerations in the Development of Time-Dependent Seismic Fragility Curves[J]. Journal of Structural Engineering, 2010, 136(12):1497-1511.
[27] 兰日清,丰彪,王自法.震后公路桥梁通行能力快速评估技术研究[J].世界地震工程,2009,25(02):81-87.
Lan Ri-qing, Feng Biao, Wang Zi-fa. Study on the fast assessment of traffic capacity of highway bridges after strong earthquakes[J]. World Earthquake Engineering, 2009, 25(2): 81-87.
[28] 蒋知之,李永义,孙庆峰,范燕.震后公路桥梁通行能力理论模型研究[J].防灾减灾工程学报,2015,35(02):226-231.
Jiang Zhi-zhi, Li Yong-yi, Sun Qing-feng, Fan Yan. Research on Theoretical Model of Traffic Capacity of Highway Bridges after Earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015,35(02):226-231.
[29] 林庆利. 基于汶川地震震害的公路桥梁易损性研究[D].中国地震局工程力学研究所,2017.
Lin Qing-li. Research on the fragility of highway bridges based on seismic damage from the Wenchuan earthquake[D]. Institute of Engineering Mechanics, CEA, 2017.
[30] Rojahn C, Sharpe R L. ATC 13:" Earthquake Damage Evaluation Data for California,".  1985.
[31] DHS (Deptartment of Homeland Security). “HAZUS-MH MR4 earthquake model user manual.” Federal Emergency Management Agency, Mitigation Division, Washington, DC.2009.
[32] Porter K A. A Survey of Bridge Practitioners to Relate Damage to Closure. Earthquake Engineering Research Laboratory, 2004.
[33] Padgett J E, Desroches R. Bridge Functionality Relationships for Improved Seismic Risk Assessment of Transportation Networks[J]. Earthquake Spectra Vol, 2007, 23(1):115-130.
[34] Masanobu Shinozuka, Yuko Murachi, Michal J. Orlikowski. Effect of seismic retrofit of bridges on transportation networks[J]. Earthquake Engineering and Engineering Vibration,2003,2(02):169-179.
[35] Yanev, B. Bridge management, Wiley, Hoboken, NJ, 2007.
[36] Orabi W, El-Rayes K, Senouci A B, et al. Optimizing Postdisaster Reconstruction Planning for Damaged Transportation Networks[J]. Journal of Construction Engineering & Management, 2012, 135(10):1039-1048.
[37] Kolisch R, Drexl A. Adaptive search for solving hard project scheduling problems[J]. Naval Research Logistics, 1996, 43(1):23–40.
[38] Bouleimen K, Lecocq H. A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version[J]. European Journal of Operational Research, 2003, 149(2):268-281.
[39] Hartmann S. A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling[J]. Naval Research Logistics, 2015, 45(7):733-750.
[40] Hartmann S, Kolisch R. Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 2000, 127(2):394-407.
[41] 张扬. 基于遗传算法的多资源约束下工程项目进度计划优化研究[D].华东交通大学,2009.
ZHANG Yang. Research on scheduling optimization of engineering projects under multi-resource constraints based on genetic algorithm [D]. East China Jiaotong University,2009.
[42] O'Shea D M, Deering G R. Bridge Maintenance Manual[J]. Maintenance, 1996.
[43] Mackie K, Mackie K, Wong J M, et al. Integrated Probabilistic Performance-Based Evaluation of Benchmark Concrete Bridges.  2008.
[44] United States Resiliency Council (USRC). Implementation Manual - USRC Building Rating System for Earthquake Hazards, United States Resiliency Council, 2015.
[45] Rojahn C, Sharpe R L. Earthquake damage evaluation data for California[M]. Applied technology council, 1985.
[46] Almufti I, Willford M. REDi Rating System: Resilience-based Earthquake Design Initiative for the Next Generation of Buildings. 2013.
[47] Chang G A, Mander J B. Seismic energy based fatigue damage analysis of bridge columns: Part I-Evaluation of seismic capacity[M]. Buffalo, NY: National Center for Earthquake Engineering Research, 1994.

PDF(5934 KB)

116

Accesses

0

Citation

Detail

段落导航
相关文章

/