土体含水率对振动压实的影响及电阻率演化特征研究

李佳文1, 陈高明1, 田世龙1, 韩博文2, 冯怀平1, 杨志浩1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 16-25.

PDF(3077 KB)
PDF(3077 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 16-25.
振动理论与交叉研究

土体含水率对振动压实的影响及电阻率演化特征研究

  • 李佳文1,陈高明1,田世龙1,韩博文2,冯怀平*1,杨志浩1
作者信息 +

Effects of soil moisture content on vibration compaction and evolution characteristics of electrical resistivity

  • LI Jiawen1, CHEN Gaoming1, TIAN Shilong1, HAN Bowen2, FENG Huaiping*1, YANG Zhihao1
Author information +
文章历史 +

摘要

土体含水率对路基振动压实的影响不可忽略,电阻率法被认为是实现含水率连续测试的有效手段。为研究不同含水率土体在振动压实过程中的变形特征及电阻率演化规律,基于非饱和土的BBM模型,结合非饱和渗流的Richards方程和表征土体电阻率的Archie推广公式,建立了考虑土体振动压实的水-力-电多场耦合数值计算模型,并通过室内试验验证了模型的准确性。而后利用数值模型分别对四组不同含水率的土体在振动压实过程中的变形、回弹模量和电阻率演化规律进行了数值计算研究。结果表明:振动压实过程中,土体含水率对于土体的变形影响显著,土体沉降最终会趋于平衡状态,含水率越低,土体达到平衡状态越快。大于最佳含水率的土体,其最终的沉降和塑性变形幅值趋于一致。土体回弹模量在振动压实过程中随着逐渐压密而相应增大,强振作用下回弹模量的增长尤为突出。振动荷载作用下电阻率的演化特征研究表明,虽然振动荷载会造成土体电阻率的周期性波动,但最终达到稳定后这种波动很小,并不会影响土体电阻率反映振动压实过程中的变形状态。通过试验和数值计算相结合的方法,对土体电阻率法测含水率进行了深入研究,验证了电阻率实时反映土体压实状态的理论与应用的合理性,可为考虑含水率的土体连续振动压实研究提供参考。

Abstract

Effects of soil body moisture content on subgrade vibration compaction can’t be ignored, and the electrical resistivity method is considered as an effective means to realize continuous measuring of moisture content. Here, to study deformation characteristics of soil bodies with different moisture contents in vibration compaction process and electrical resistivity evolution law, based on BBM model of unsaturated soil, combined with Richards equation of unsaturated seepage and Archie extended formula to characterize soil body electrical resistivity, a water-force-electricity multi-field coupling numerical calculation model considering soil vibration compaction was established. The correctness of the model was verified with laboratory tests. Then, the numerical model was used to study deformation, resilience modulus and electrical resistivity evolution law of soil bodies with 4 sets of different moisture contents in vibration compaction process. The results showed that in vibration compaction process, soil body moisture content has a significant impact on soil body deformation and soil body settlement can eventually tend to equilibrium state, the lower the moisture content, the faster the soil body reaches its equilibrium state; final settlement and plastic deformation amplitude of soil body with a moisture content larger than the optimal moisture content tend to be consistent; resilience modulus of soil body increases gradually with compaction in vibration compaction process, and increase in resilience modulus is particularly prominent under strong vibration. The study on evolution characteristics of electricity resistivity under vibration load showed that although vibration load can cause periodic fluctuation of soil body electricity resistivity, this fluctuation is very small after reaching stability and can’t affect soil body resistivity to reflect deformation state in vibration compaction process. Through combination of tests and numerical calculations, the soil body electricity resistivity method used to measure moisture content was deeply studied to verify the theoretical and application rationality of its real-time reflecting soil compaction status, and provide a reference for studying continuous vibration compaction of soil body considering moisture content. 

关键词

路基土 / 振动压实 / 含水率 / 电阻率演化规律 / 水-力-电多场耦合

Key words

subgrade soil / vibration compaction / moisture content / evolution law of electrical resistivity / water-force-electricity multi-field coupling 

引用本文

导出引用
李佳文1, 陈高明1, 田世龙1, 韩博文2, 冯怀平1, 杨志浩1. 土体含水率对振动压实的影响及电阻率演化特征研究[J]. 振动与冲击, 2025, 44(7): 16-25
LI Jiawen1, CHEN Gaoming1, TIAN Shilong1, HAN Bowen2, FENG Huaiping1, YANG Zhihao1. Effects of soil moisture content on vibration compaction and evolution characteristics of electrical resistivity[J]. Journal of Vibration and Shock, 2025, 44(7): 16-25

参考文献

[1]叶阳升, 朱宏伟, 尧俊凯, 等. 高速铁路路基振动压实理论与智能压实技术综述[J]. 中国铁道科学, 2021, 42(5): 1-11.
YE Yangsheng, ZHU Hongwei, YAO Xiaokai, et al. Review on vibration compaction theory and intelligent compaction technology of high-speed railway subgrade[J]. China Railway Science, 2021, 42(5): 1-11.
[2]杨长卫, 张良, 苏珂, 等. 基于VMD-Hilbert变换的铁路路基填料振动压实动力响应研究[J]. 岩石力学与工程学报, 2022, 41(增刊1): 2991-3001.
YANG Changwei, ZHANG Liang, SU Ke, et al. Research on dynamic response of railway subgrade filling material under vibration compaction based on VMD-Hilbert transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl.1): 2991-3001.
[3]HU W, JIA X Y, ZHU X Y, et al. Influence of moisture content on intelligent soil compaction[J]. Automation in Construction, 2020, 113: 103141.
[4]张廷雷, 蒋良文, 张晓晖, 等. 含水率对K30值和Evd值相关性的影响研究[J]. 铁道工程学报, 2019, 36(4): 10-14.
ZHANG Yanlei, JIANG Liangwen, ZHANG Xiaohui, et al. Research on the effect of moisture content on correlation between K30 and Evd[J]. Journal of Railway Engineering Society, 2019, 36(4): 10-14.
[5]苗强强, 陈正汉, 朱青青. 非饱和含黏砂土不排水不排气力学特性三轴试验研究[J]. 岩土工程学报, 2022, 44(增刊1): 17-23.
MIAO Qiangqiang, CHEN Zhenghan, ZHU Qingqing. Triaxial tests on mechanical properties of undrained and unvented unsaturated clayey sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(Suppl.1): 17-23.
[6]袁俊平, 詹斌, 陈胜超, 等. 含水率和压实度对路基填土力学特性的影响[J]. 水利与建筑工程学报, 2013, 11(2): 98-102.
YUAN Junping, ZHAN Bin, CHEN Shengchao, et al. Effects of water content and compaction degree on mechanical characteristics of roadbed[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(2): 98-102.
[7]WANG X F, DONG X P, LI J L, et al. Developing an advanced ANN-based approach to estimate compaction characteristics of highway subgrade[J]. Advanced Engineering Informatics, 2023, 56: 102023.
[8]WHITE D J, VENNAPUSA P K R, GIESELMAN H H. Field assessment and specification review for roller-integrated compaction monitoring technologies[J]. Advances in Civil Engineering, 2011, 2011: 1-15.
[9]ZHANG Q L, AN Z Z, LIU T Y, et al. Intelligent rolling compaction system for earth-rock dams[J]. Automation in Construction, 2020, 116: 103246.
[10]ANJAN KUMAR S, ALDOURI R, NAZARIAN S, et al. Accelerated assessment of quality of compacted geomaterials with intelligent compaction technology[J]. Construction and Building Materials, 2016, 113: 824-834.
[11]CUI X Z, YAN S R, ZHANG X N, et al. Research on the coupled dynamic response of vibratory roller-unsaturated subgrade under different compaction and moisture content states[J]. Transportation Geotechnics, 2024, 46: 101252.
[12]ZHU X Y, BAI S J, XUE  G P, et al. Assessment of compaction quality of multi-layer pavement structure based on intelligent compaction technology[J]. Construction and Building Materials, 2018, 161: 316-329.
[13]WANG X F, DONG X P, ZHANG Z S, et al. Compaction quality evaluation of subgrade based on soil characteristics assessment using machine learning[J]. Transportation Geotechnics, 2022, 32: 100703.
[14]KODIKARA J, ISLAM T, SOUNTHARARAJAH A. Review of soil compaction: History and recent developments[J]. Transportation Geotechnics, 2018, 17: 24-34.
[15]马德良. 土体动力湿化特性及多相耦合分析研究[D]. 石家庄:石家庄铁道大学, 2022.
[16]CALAMITA G, BROCCA L, PERRONE A,et al.Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites[J].Journal of Hydrology, 2012, 454/455: 101-112.
[17]AROSIO D, MUNDA S, TRESOLDI G,et al.A customized resistivity system for monitoring saturation and seepage in earthen levees: Installation and validation[J].Open Geosciences, 2017, 9(1): 457-467.
[18]DICK J, TETZLAFF D, BRADFORD J, et al. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types[J]. Journal of Hydrology, 2018, 559: 684-697.
[19]BRILLANTE L, MATHIEU O, BOIS B, et al. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards[J]. Soil Discussions, 2014, 1(1): 677-707.
[20]岳秋婷. 基于多场耦合的路基含水率电测法适应性研究[D]. 石家庄: 石家庄铁道大学, 2021.
[21]邓晓琳. 振动荷载作用下路基土体电阻率演化规律研究[D]. 石家庄: 石家庄铁道大学, 2023.
[22]冯怀平, 马德良, 王志鹏, 等. 基于范德堡法的非饱和土电阻率测试方法[J]. 岩土工程学报, 2017, 39(4): 690-696.
FENG Huaiping, MA Deliang, WANG Zhipeng, et al. Measurement of resistivity of unsaturated soils using van der pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696.
[23]殷宗泽, 凌华. 非饱和土一维固结简化计算[J]. 岩土工程学报, 2007(5): 633-637.
YIN Zongze, LING Hua. Simplified computation of 1D consolidation for partially saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007(5): 633-637.
[24]曹雪山,袁俊平,丁国权.抽气现场试验的土工膜下盲沟气阻数值模拟研究[J].岩土工程学报, 2022, 44(10): 1780-1788.
CAO Xueshan, YUAN Junping, DING Guoquan. Numerical simulation of air resistance of French drains beneath geomembrane in field vacuuming tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1780-1788.
[25]GATTI F, BRESSAN A, FUMAGALLI A, et al. Two Nitsche-based mixed finite element discretizations for the seepage problem in Richards’ equation[J]. Computer Methods in Applied Mechanics and Engineering, 2024,
 432: 117368.
[26]GOH ENG GIAP S, KOSUKE N. Richards’ equation: transition between constitutive equations and the mechanics of water flow in unsaturated soil[J]. Journal of Advanced Research in Applied Mechanics, 2020, 73(1): 11-19.
[27]赵晨霞. 饱和—非饱和土壤渗流过程中Richards方程的分析与计算[D]. 兰州: 兰州大学, 2016.
[28]ZHU H L, LIU T X, XUE B L, et al. Modified richards’ equation to improve estimates of soil moisture in two-layered soils after infiltration[J]. Water, 2018, 10(9): 1174.
[29]VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[30]ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
[31]TAFILI M, MACHACˇEK J. Generalized hydro-mechanically coupled hypoplastic constitutive model for unsaturated collapsible soils[J]. Canadian Geotechnical Journal, 2024, 61(8): 1622-1638.
[32]孙德安. 非饱和土力学特性及本构模型[J]. 岩土工程学报, 2023, 45(1): 1-23.
SUN Dean. Mechanical behaviors and constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 1-23.
[33]PEDROSO D M, FARIAS M M. Extended barcelona basic model for unsaturated soils under cyclic loadings[J]. Computers and Geotechnics, 2011, 38(5): 731-740.
[34]ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62.
[35]陈松林,赵明阶,汪魁.三轴条件下土石混合料电阻率特性分析[J].地下空间与工程学报, 2023, 19(6): 1859-1869.
CHEN Songlin, ZHAO Mingjie, WANG Kui. Analysis of electrical resistivity characteristics of soil-rock mixture under triaxial condition[J]. Chinese Journal of Underground Space and Engineering, 2023,19(6): 1859-1869.
[36]陈松林, 汪魁, 赵明阶. 土石混合体成因及电阻率特性研究进展[J]. 重庆交通大学学报(自然科学版), 2022, 41(12): 112-119.
CHEN Songlin, WANG Kui, ZHAO Mingjie. Research progress on origin and electrical resistivity characteristics of soil-rock composite medium[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(12): 112-119.
[37]章定文, 曹智国, 刘松玉. 固化土电阻率变化规律与经验模型[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4139-4144.
ZHANG Dingwen, CAO Zhiguo, LIU Songyu. Characteristics and an experiential model of electrical resistivity of stabilized soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl.2): 4139-4144.
[38]查甫生, 刘松玉, 杜延军, 等. 基于电阻率的非饱和土基质吸力预测[J]. 岩土力学, 2010, 31(3): 1003-1008.
CHA Pusheng, LIU Songyu, DU Yanjun, et al. Prediction of matric suction of unsaturated soil based on electrical resistivity[J]. Rock and Soil Mechanics, 2010, 31(3): 1003-1008.
[39]齐江涛, 王凯晨, 包志远, 等. 基于Wenner和Schlumberger双组态融合的土壤电导率测量装置[J]. 农业工程学报, 2024, 40(1): 90-99.
QI Jiangtao, WANG Kaichen, BAO Zhiyuan, et al. Measuring soil electrical conductivity using dual-array fusion of Wenner and Schlumberger [J]. Transactions of the Chinese Society of Agricultural Engineerin, 2024, 40(1): 90-99.
[40]LIU C, YAN Y, YANG H Q. Numerical modeling of small-scale unsaturated soil slope subjected to transient rainfall[J]. Geosystems and Geoenvironment, 2023, 2(4): 100193.
[41]KENNEALLY B, MUSIMBI O M, WANG J, et al. Finite element analysis of vibratory roller response on layered soil systems[J]. Computers and Geotechnics, 2015, 67: 73-82.
[42]马涛, 方周. 路基振动压实动力学响应机理研究[J]. 中国公路学报, 2022, 35(5): 1-11.
MA Tao, FANG Zhou. Simulation analysis of vibratory roller response on subgrade[J].China Journal of Highway and Transport, 2022, 35(5): 1-11.

PDF(3077 KB)

109

Accesses

0

Citation

Detail

段落导航
相关文章

/