基于纳米混杂合成纤维混凝土SHPB试验的RHT数值模型参数研究

李长辉1, 2, 王慧颖1, 杨放1, 谢承彦1, 崔健3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 181-193.

PDF(4816 KB)
PDF(4816 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 181-193.
冲击与爆炸

基于纳米混杂合成纤维混凝土SHPB试验的RHT数值模型参数研究

  • 李长辉1,2,王慧颖1,杨放*1,谢承彦1,崔健3
作者信息 +

Parametric study on RHT numerical model based on SHPB tests of NCSPFRC

  • LI Changhui1,2, WANG Huiying1, YANG Fang*1, XIE Chengyan1, CUI Jian3
Author information +
文章历史 +

摘要

本文研究了RHT模型参数对混凝土动态力学响应的影响规律。基于纳米混杂合成聚丙烯纤维混凝土(NCSPFRC)的分离式霍普金森压杆(split Hopkinson pressure bars,SHPB)冲击试验结果和RHT模型原始文献参数,采用Hyper-Mesh和LS-DYNA有限元软件进行数值模拟。研究结果表明:数值模拟结果与试验结果吻合度较低,峰值应力和峰值应变的模拟值相对试验值误差均超过35%,直接使用RHT模型原始文献参数无法准确描述不同强度等级、类型混凝土的动态力学响应。在此基础上,对RHT模型参数的敏感性进行了分析,并根据分析结果对模型参数进行修正,修正后的RHT模型参数所得模拟结果与试验结果具有良好的一致性,相较试验值其模拟峰值应力和峰值应变的误差值大多低于7%,在允许误差范围内。这表明修正后的RHT模型能够较准确地描述NCSPFRC的动态力学性能,同时也验证了本文采用的参数调整方法的正确性和可行性。

Abstract

This paper investigates the effect of RHT model parameters on the dynamic mechanical response of concrete. Based on the split Hopkinson pressure bars(SHPB) tests of Nano Cellulose Synthetic Polypropylene Fiber Reinforced Concrete (NCSPFRC), the impact process was simulated by LS-DYNA and Hyper Mesh with the Riedel-Hiermaier-Thoma (RHT) constitutive model. The results show that the simulation results have a low degree of agreement with the experimental data. The error between the peak stress and peak strain test values and the simulated values is 35%, which exceeds the allowable error. The dynamic mechanical response of different strength classes and types of concrete cannot be accurately described by the original literature parameters of the RHT model. On this basis, the sensitivity of the RHT model parameters was analyzed, and the original model parameters were revised according to the analysis results. The simulation results obtained from the revised RHT model parameters were in good agreement with the test results, the error between the peak stress and peak strain test values and the simulated values is 7% to be within the allowable error. This indicates that the dynamic mechanical properties of NCSPFRC can be accurately described by the revised RHT model parameters. Moreover, the correctness and feasibility of the parameter adjustment method adopted in this study were verified.

关键词

RHT模型 / 纳米混杂合成纤维混凝土 / 分离式霍普金森压杆(SHPB) / 数值模拟 / 参数敏感性分析

Key words

RHT model / Nano Cellulose Synthetic Polypropylene Fiber Reinforced Concrete;split Hopkinson pressure bars(SHPB) / numerical simulation / parametric sensitivity analysis.

引用本文

导出引用
李长辉1, 2, 王慧颖1, 杨放1, 谢承彦1, 崔健3. 基于纳米混杂合成纤维混凝土SHPB试验的RHT数值模型参数研究[J]. 振动与冲击, 2025, 44(7): 181-193
LI Changhui1, 2, WANG Huiying1, YANG Fang1, XIE Chengyan1, CUI Jian3. Parametric study on RHT numerical model based on SHPB tests of NCSPFRC[J]. Journal of Vibration and Shock, 2025, 44(7): 181-193

参考文献

[1] 李晓琴, 廖俊智, 陈建飞, 等. 混凝土动态力学行为数值模拟研究[J/OL]. 工程力学, 1-12[2024-06-12]. DOI: 10.6052/j.issn.1000-4750.2022.10.0865.
LI X Q, LIAO J Z, CHEN J F, et al. Numerical analysis on dynamic mech2 behavior of concrete[J/OL]. Engineering Mechanics, 1-12[2024-06-12]. DOI: 10.6052/j.issn.1000-4750.2022.10.0865.
[2] 陈振富, 邓都, 蔡双阳. 不同应变率下铅锌尾矿砂混凝土动态抗压力学性能试验研究[J]. 建筑结构, 2023, 53(14): 119-125. DOI: 10.19701/j.jzjg.20210059.
CHEN Z F, DENG D, CAI S Y. experimental study on dynamic compressive mechanical properties of lead-zinc tailing concrete under different strain rates[J]. Building Structure, 2023, 53(14): 119-125. DOI: 10.19701/j.jzjg.20210059.
[3] 吕亚茹, 吴琳, 王媛, 等. 玻璃球宏细观冲击特性的SHPB试验和耦合数值模拟研究[J]. 工程力学, 2023, 40(06): 245-256. DOI: 10.6052/j.issn.1000-4750.2021.11.0857.
LV Y R, WU L, WANG Y, et al. Macro and micro quantitative study on impact behavior of glass beadsby SHPB tests and FEM-DEM coupling analysis[J]. Engineering Mechanics, 2023, 40(06): 245-256. DOI: 10.6052/j.issn.1000-4750.2021.11.0857.
[4] 宗周红, 李佳奇, 任逸文, 等. 轴向冲击荷载下中空夹层钢管混凝土的动态力学性能分析[J]. 东南大学学报(自然科学版), 2022, 52(05): 883-889. DOI: 10.13465/j.cnki.jvs.2020.02.021.
ZONG Z H, LI J Q, REN Y W, et al. Analysis on dynamic mechanical properties of concrete-filled double-skin steel tube under axial impact loading[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(05): 883-889. DOI: 10.13465/j.cnki.jvs.2020.02.021.
[5] 杨健辉, 李潇雅, 叶亚齐, 等. 全轻纤维混凝土的SHPB冲击强度与耗能效应[J]. 振动与冲击, 2020, 39(02): 148-153+177. DOI: 10.13465/j.cnki.jvs.2020.02.021.
YANG J H, LI X Y, YE Y Q, et al. Strength and energy dissipation effect of fiber reinforced all-lightweight concrete based on SHPB impact tests[J]. Journal of Vibration and Shock, 2020, 39(02): 148-153+177. DOI: 10.13465/j.cnki.jvs.2020.02.021.
[6] 任亮, 何瑜, 王凯. 基于整形器的UHPC材料SHPB试验数值模拟与分析[J]. 振动与冲击, 2019, 38(21): 44-52. DOI: 10.13465/j.cnki.jvs.2019.21.007.
REN L, HE Y, WANG K. Numerical simulation and analysis of SHPB test for UHPC material based on shaper[J]. Journal of Vibration and Shock, 2019, 38(21): 44-52. DOI: 10.13465/j.cnki.jvs.2019.21.007.
[7] 王兴贤. 低温环境下水工碾压混凝土冲击力学特性数值模拟[D]. 西安: 西京学院, 2023: 09-22.
[8] Holomquist T J,Johnson G R,Cook W H.A computational constitutive model for concrete subjective to large strains,high strain rates,and high pressures[C]//Jackson N,Dickert S.The 14th International Symposium on Ballistics, USA: American Defense Prepareness Association,1993:591-600.
[9] 巫绪涛, 孙善飞, 李和平. 用HJC本构模型模拟混凝土SHPB实验[J]. 爆炸与冲击, 2009, 29(02): 137-142. DOI: 10.11883/1001-1455(2009)02-0137-06.
WU X T, SUN S F, LI H P. Simulation of concrete SHPB experiments with the HJC model[J]. Explosion and Shock Waves, 2009, 29(02): 137-142. DOI: 10.11883/1001-1455(2009)02-0137-06.
[10] 巫绪涛, 李耀, 李和平. 混凝土HJC本构模型参数的研究[J]. 应用力学学报, 2010, 27(02): 340-344+443. DOI: 1000-4939(2010)02-0340-05
WU X T, LI Y, LI H P. Study of the parameters of the HJC model for concrete[J]. Chinese Journal of Applied Mechanics, 2010, 27(02): 340-344+443. DOI: 1000-4939(2010)02-0340-05
[11] 吴赛, 赵均海, 王娟, 等. 基于砼SHPB试验数值分析的HJC模型参数研究[J]. 计算力学学报, 2015, 32(06): 789-795. DOI: 10.7511/jslx201506012. 
WU S, ZHAO J H, WANG J, et al. Parametric study of HJC model based on numerical analysis of concrete SHPB test[J]. Chinese Journal of Computational Mechanics, 2015, 32(06): 789-795. DOI: 10.7511/jslx201506012.
[12] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土冲击压缩性能试验研究与数值模拟[J]. 建筑材料学报, 2021, 24(02): 283-290. DOI: 10.3969/j.issn.1007-9629.2021.02.008.
YUE C J, YU H F, MA H Y, et al. Experimental study and simulation of impact compression of coral aggregate seawater concrete[J]. Journal of Building Materials, 2021, 24(02): 283-290. DOI: 10.3969/j.issn.1007-9629.2021.02.008.
[13] Ma H Y, Yue C J, Yu H F, et al. Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete[J]. International Journal of Impact Engineering, Volume 137, 2020, 103466, DOI: https://doi.org/10.1016/j.ijimpeng.2019.103466.
[14] 刘晋铭, 张寿松, 周亭, 等. 聚乙烯醇和超高分子量聚乙烯纤维对全珊瑚混凝土动态力学性能影响与数值模拟[J]. 复合材料学报, 2023, 40(06): 3613-3625. DOI: 10.13801/j.cnki.fhclxb.20220901.002.
LIU J M, ZHANG S S, ZHOU T, et al. Influence of polyvinyl alcohol and ultrahigh molecular weight polyethylene fibers on dynamic mechanical properties of coral aggregate concrete and numerical simulation[J]. Acta Materiae Compositae Sinica, 2023, 40(06): 3613-3625. DOI: 10.13801/j.cnki.fhclxb.20220901.002.
[15] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18): 9-16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete[J]. Journal of Vibration and Shock, 2016, 35(18): 9-16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
[16] 何瑜. 基于SHPB技术的超高性能混凝土冲击压缩性能数值研究[D]. 南昌:华东交通大学, 2019. DOI: 10.27147/d.cnki.ghdju.2019.000460.
[17] 叶涛. 铅锌尾矿砂混凝土静动态劈拉性能的试验研究与数值模拟[D]. 衡阳:南华大学,2021. DOI: 10.27234/d.cnki.gnhuu.2021.000077.
[18] 任亮, 喻贤明, 万超, 等. 基于CSC模型的UHPC低速冲击压缩性能研究[J/OL]. 应用力学学报, 2024(04): 1-10[2024-05-29]. http://kns.cnki.net/kcms/detail/61.1112.O3.20221130.1329.006.html.
REN L, YU X M, WAN C, et al. Study on low-speed impact compression performance of UHPC based on CSC model[J/OL]. Chinese Journal of Applied Mechanics, 2024(04): 1-10[2024-05-29]. http://kns.cnki.net/kcms/detail/61.1112.O3.20221130.1329.006.html.
[19] 余道兴, 宗周红, 李明鸿, 等. 基于不同材料模型的混凝土SHPB试验数值模拟[J]. 东南大学学报(自然科学版), 2017, 47(01): 124-129. DOI: 10.3969/j.issn.1001-0505.2017.01.022.
YU D X, ZONG Z H, LI M H, et al. Numerical simulation of concrete SHPB test based on different material models[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(01): 124-129. DOI: 10.3969/j.issn.1001-0505.2017.01.022.
[20] Riedel W., Thoma K., Hiermaier S., et al. Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes[C], In: SKA (ed), Proceedings of the 9th International Symposiumon Interaction of the Effects of Munitions with Structures, Berlin, 1999, pp. 315-322.
[21] 聂铮玥,彭永,陈荣,等.侵彻条件下岩石类材料RHT模型参数敏感性分析[J].振动与冲击,2021,40(14):108-116.
Nie Zhengyue, Peng Yong, Chen Rong, et al. Sensitivity analysis of RHT model parameters for rock materials under penetrating condition[J]. Vibration and Shock, 2021, 40(14):108-116.
[22] Al-Salloum Y, Almusallam T, Ibrahim S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments[J]. Cement and Concrete Composites, 2015, 55: 34-44.
[23] Wang Z, Huang J, Chen Y, et al. Dynamic mechanical properties of different types of rocks under impact loading[J]. Scientific Reports, 2023, 13(1): 19147.
[24] BORRVALL T, RIEDEL W. The RHT concrete model in LS DYNA[C]//Proceeding of the 8th European LS-DYNA Users Conference. Strasbourg: [s. n.], 2011.
[25] 李洪超,刘殿书,赵磊,等.大理岩RHT模型参数确定研究[J].北京理工大学学报,2017,37(08):801-806.DOI:10.15918/j.tbit1001-0645.2017.08.006.LI Hongchao, LIU Dianshu, ZHAO Lei, et al. Study on parameters determination of marble rht model[J]. Transactions of Beijing institute of Technology, 2017, 37(8): 801-806.
[26] L.X. Xie, W.B. Lu, Q.B. Zhang, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses, Tunnelling and Underground Space Technology, Volume 66, 2017, Pages 19-33, ISSN 0886-7798, DOI: 10.1016/j.tust.2017.03.009.
[27] Haochen Wang, Zhiliang Wang, Jianguo Wang, et al. Effect of confining pressure on damage accumulation of rock under repeated blast loading, International Journal of Impact Engineering, Volume 156, 2021, 103961, ISSN 0734-743X, DOI: 10.1016/j.ijimpeng.2021.103961.

PDF(4816 KB)

139

Accesses

0

Citation

Detail

段落导航
相关文章

/