基于证据理论的装药撞击点火不确定量化分析

刘骁骁1, 徐阳冰1, 侯欣婷2, 张峰2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 201-208.

PDF(1447 KB)
PDF(1447 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 201-208.
冲击与爆炸

基于证据理论的装药撞击点火不确定量化分析

  • 刘骁骁1,徐阳冰1,侯欣婷2,张峰*2
作者信息 +

Quantitative analysis of uncertainty of charge impact ignition based on evidence theory

  • LIU Xiaoxiao1, XU Yangbing1, HOU Xinting2, ZHANG Feng*2
Author information +
文章历史 +

摘要

炸药运输环境的要求较高也较为复杂,可能会有跌落、撞击等意外风险的发生,使得炸药内部形成局部损伤,引起燃烧、爆炸等后果。但炸药撞击过程中的不确定性使装药撞击点火也存在不确定性,从而导致现有的确定性定量分析结果往往过于保守或偏离理想状态。为此,本文研究了炸药爆炸过程中不确定性参数对装药撞击的影响,采用ANSYS/LS-DYNA,建立能够反映装药撞击点火的有限元模型,同时依据“裕量和不确定性量化(Quantification of Margins and Uncertainties,QMU)”概念,提出了基于证据理论的装药撞击点火“最大动内能和”QMU方法,建立了装药撞击点火最大动内能和的响应面函数,从而获得“最大动内能和”的概率上下界。最后,基于QMU理论,确定了装药撞击点火模型“最大动内能和”在不同置信水平下的置信因子,用以评价装药撞击点火结构的安全性。该项研究工作能为排查炸药撞击产生的安全隐患提供理论依据,亦为此后炸药运输的安全性设计提供基础保障。

Abstract

Requirements of the explosive transportation environment are higher and more complicated. There may be unexpected risks such as falling and crashing, which cause the local damages inside the explosive. This phenomenon leads to the burning, the explosion and other consequences. However, the uncertainty in the explosive impact process makes the charge impact ignition being uncertain. As such, the current deterministic quantitative results frequently depart from the ideal condition or are overly conservative. Consequently, the influence of uncertain parameters on charge impacts during the explosive explosion. ANSYS/LS-DYNA is employed to establish a finite element model that can reflect the charge impact ignition. According to the concept of "Quantification of Margins and Uncertainties" (QMU), the QUM approach of the maximum internal energy sum of the charge impact ignition can be proposed based on the evidence theory. Sequentially, the response surface function of the maximum dynamic internal energy sum of the charge impact ignition is established. Then the probability upper and lower bounds of "maximum sum of dynamic internal energies" are obtained. Finally, based on the QMU theory, the confidence factors of "the maximum dynamic internal energy sum" in different confidence levels can be determined to evaluate the safety of the charge impact ignition. The theoretical underpinnings for analyzing the safety risk, which is caused by the explosive impact, can be provided through this research. Meanwhile, the basic guarantee for the safety design of the explosive transportation can also be presented by the proposed method in the future. 

关键词

裕量和不确定性量化 / 不确定性 / 装药撞击点火 / 最大动能和 / 证据理论

Key words

quantification of margins and uncertainties(QUM);Uncertainty;Charge impact ignition;Maximum internal energy sum;Evidence theory  /

引用本文

导出引用
刘骁骁1, 徐阳冰1, 侯欣婷2, 张峰2. 基于证据理论的装药撞击点火不确定量化分析[J]. 振动与冲击, 2025, 44(7): 201-208
LIU Xiaoxiao1, XU Yangbing1, HOU Xinting2, ZHANG Feng2. Quantitative analysis of uncertainty of charge impact ignition based on evidence theory[J]. Journal of Vibration and Shock, 2025, 44(7): 201-208

参考文献

[1] ASAY B W. Shock Wave Science and Technology Reference Library, Vol. 5 Non-Shock Initiation of Explosive [M]. Berlin Heidelberg: Springer-Verlag, 2010: 419 .
[2] HAMDAN S, Swallowe G M. The strain-rate and temperature dependence of the mechanical properties of polyetherketone and polyetheretherketone [J]. Journal of Materials Science, 1996, 31(6): 1415-1423.
[3] BALZER J E, FIELD J E, GIFFORD M J, et al. High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX [J]. Combustion and Flame, 2002, 130(4): 298-306.
[4] 陈春燕, 栗保华, 李昆,等. 冲击加载下PBX的点火特性与力学特性间的关系[J]. 火炸药学报, 2018, 41(4): 369-374.
CHEN Chunyan, LI Baohua, LI Kun, et al. Relationship between ignition characteristics and mechanical properties of PBXS under shock loading [J]. Journal of explosives, 2018, 41(4): 369-374.
[5] 李亮亮, 屈可朋, 沈飞,等. 基于霍普金森压杆的RDX 基含铝炸药装药双脉冲加载实验[J]. 火炸药学报, 2018, 41(1): 52-56.
LI Liangliang, QU Kepeng, SHEN Fei, et al. Experimental study on double pulse loading of RDX based aluminum explosive charge based on Hopkinson pressure bar [J].  Journal of explosives, 2018, 41(1): 52-56.
[6] TARVER C M, HALLQUIST J O, ERICKSON L M. Modeling short pulse duration shockinitiation of solid explosives [C]. Boston: Proceedings of 8th Symposium (International) on Detonation, 1985: 951-961.
[7] SCHWER L E. Impact and detonation of COMP-B an example using the LS-DYNA EOS: ignition and growth of reaction in high explosives [C]. Detroit:12th International LS-DYNA Users Conference, 2012: 1-19.
[8] 李健, 张勇, 吴彦卓,等. AP 粒度对 HTPB 推进剂撞击起爆影响的数值模拟 [J]. 火炸药学报, 2018, 41(3): 298-302.
LI Jian, ZHANG Yong, WU Yanzhuo, at el. Numerical simulation of the effect of AP size on the impact initiation of HTPB propellant [J]. Journal of explosives, 2018, 41(3): 298-302.
[9] 严涵, 于艳春, 陈卫东,等. 粘弹性统计裂纹模型的炸药安全性分析 [J]. 哈尔滨工程大学学报, 2019, 40(3): 495-500.
YAN Han, YU Chunyan, CHEN Weidong, at el. Safety analysis of explosive based on viscoelastic statistical crack model [J]. Journal of Harbin Engineering University, 2019, 40(3): 495-500.
[10] PANCHADHARA R, GONTHIER K A. Mesoscale analysis of volumetric and surface dissipation in granular explosive induced by uniaxial deformation waves [J]. Shock Waves, 2011, 21: 43. 
[11] GILBERT J, CHAKRAVARTHY S, GONTHIER K A. Computational analysis of hot-spot formation by quasi-steady deformation waves in porous explosive [J]. Journal of Applied Physics, 2013, 113: 194901 .
[12] CHAKRAVARTHY S, GONTHIER K A. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive [J]. Journal of Applied Physics, 2016, 120: 024901.
[13] BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46: 2303.
[14] HABWEMAN K S, BENNETT J G. Modeling, simulation and experimental verification of constitutive models for energetic materials [J]. AIP Conference Proceedings, 1998: 273. 
[15] HABWEMAN K S, BENNETT J G. Verification of constitutive models using the ASAY impact test [R]. San Diego: Los Alamos National Laboratory, 1998, 98-905. 
[16] XIAO Y C, SUN Y, ZHEN Y B, et al. Characterization, modeling and simulation of the impact damage for polymer bonded explosives [J]. International Journal of Impact Engineering, 2017, 103: 149. 
[17] LIU R, CHEN P W. Modeling ignition prediction of HMX-based polymer bonded explosives under low velocity impact [J]. Mechanics of Materials, 2018, 124: 106 .
[18] HELTON J C, JOHNSON J D. Quantification of margins and uncertainties: Conceptual and computational basis [J]. Reliability Engineering and System Safety, 2011, 96(9): 976-1013.
[19] HELTON J C, JOHNSON J D.. Quantification of margins and uncertainties: Altemative representations of epistemic uncertainty [J]. Reliability Engineering and System Safety, 2011, 96(9): 1034-1052.
[20] 唐炜, 王玉明. 复杂系统关键特征参数确定方法[J]. 信息与电子工程,2011, 9(1): 83-86.
TANG Wei, WANG Yuming. Method for determining key characteristic parameters of complex systems [J]. Information and Electronic Engineering, 2011,  9(1): 83-86.
[21] 锁斌, 李君雅, 许献国等. 电源电路抗 总剂量辐射性能建模与裕量与不确定性量化评估[J]. 强激光与粒子束, 2017, 29(11): 147-153.
SUO Bin, LI Junya, XU Xianguo, at el. Modeling of anti-  total dose radiation performance of power circuits and quantitative evaluation of margin and uncertainty [J]. Intense laser and particle beams, 2017, 29(11): 147-153.
[22] 王林峰, 邓冰杰, 莫诎等. 基于概率论的爆破振动安全评估与控制[J]. 振动与冲击, 2020, 39(14): 122-129.
WANG Linfeng, DENG Bingjie, MO Qu, at el. Safety assessment and control of blasting vibration based on the probability theory [J]. Journal of Vibration and Shock, 2020, 39(14): 122-129.
[23] 马腾, 王金相, 刘亮涛等. 不同长径比柱形装药水下爆炸冲击波演化规律[J]. 振动与冲击, 2022, 41(08): 149-157+222.
MA Teng, WANG Jinxiang, LIU Liangtao, at el. Shock wave evolution of cylindrical charge with different slender ratios [J]. Journal of Vibration and Shock, 2022, 41(08): 149-157+222.

PDF(1447 KB)

78

Accesses

0

Citation

Detail

段落导航
相关文章

/