高墩大跨连续刚构桥梁动力冲击系数研究

韦倩1, 覃亮2, 王宁波1, 户东阳3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 209-216.

PDF(1284 KB)
PDF(1284 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 209-216.
冲击与爆炸

高墩大跨连续刚构桥梁动力冲击系数研究

  • 韦倩1,覃亮2,王宁波1,户东阳*3
作者信息 +

Dynamic impact coefficient of high pier large-span continuous rigid frame bridge

  • WEI Qian1, QIN Liang2, WANG Ningbo1, HU Dongyang*3
Author information +
文章历史 +

摘要

移动荷载作用下动力冲击问题与桥梁设计、运营维护密切关联,涉及桥梁结构建造经济性与服役安全性。当前的众多研究主要聚焦车辆过桥的动力放大,而单个车辆过桥行为的动力放大系数往往并不等同于桥梁设计阶段采用的动载系数。论文基于车-桥-墩耦合系统模型动力响应数值仿真计算,给出桥梁动力冲击系数(Bridge Impact Factor, BIF)的定义和计算方法。针对某高墩大跨梁桥,开展BIF计算和影响因素研究,分析限行速度、路面平整度等对BIF的影响。结果表明:BIF是与桥梁状态相关的固有特征参数,和桥梁的容许荷载、限行速度、路面平顺性等因素密切相关;BIF随着限行速度增大而增大,但当限行速度超过最不利速度后,BIF则保持不变;路面不平度对BIF有更显著的影响,随着路面不平度的增加,BIF进一步放大;当桥面发生恶化时,可以实施桥面铺装修复或限速限载来确保BIF在允许范围内。该研究揭示了桥梁BIF取值及衍化规律,可为同类型桥梁设计及运维管理提供指导与参考。

Abstract

The dynamic impact problem under moving load is closely related to bridge design, operation and maintenance, and involves the economy and service safety of bridge structure construction. At present, many studies mainly focus on the dynamic amplification of vehicle crossing the bridge, and the dynamic amplification coefficient of a single vehicle crossing the bridge is often not equal to the dynamic load coefficient used in the design stage of the bridge. Based on the numerical simulation of the dynamic response of the vehicle-bridge-pier coupling system model, the definition and calculation method of the bridge impact factor (BIF) were given. Aiming at a high-pier and long-span girder bridge, the BIF calculation and influencing factors were studied, and the influence of speed limit and pavement roughness on BIF was analyzed. The results show that BIF is an inherent characteristic parameter related to the bridge state, which is closely related to the allowable load, limited speed and pavement smoothness of the bridge. BIF increases with the increase of the speed limit, but when the speed limit exceeds the most unfavorable speed, BIF remains unchanged. Road roughness has a more significant effect on BIF, and BIF is further amplified with the increase of road roughness. When the bridge deck deteriorates, bridge deck pavement repair or speed limit can be implemented to ensure that the BIF is within the allowable range. This study reveals the value and evolution law of bridge BIF, which can provide guidance and reference for the design and operation and maintenance management of the same type of bridge.

关键词

高墩桥梁 / 动力冲击系数 / 车辆过桥 / 数值计算

Key words

high pier bridge / dynamic impact coefficient / vehicles crossing the bridge / numerical calculation

引用本文

导出引用
韦倩1, 覃亮2, 王宁波1, 户东阳3. 高墩大跨连续刚构桥梁动力冲击系数研究[J]. 振动与冲击, 2025, 44(7): 209-216
WEI Qian1, QIN Liang2, WANG Ningbo1, HU Dongyang3. Dynamic impact coefficient of high pier large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2025, 44(7): 209-216

参考文献

[1] 陈志为, 肖钧垚, 任伟新, 等. 基于过桥重载车辆动力响应的桥梁影响线识别方法[J]. 中国公路学报, 2024, 37(08): 77-87.
CHEN Zhiwei, XIAO Junyao, REN Weixin, et al. Identification method of bridge influence line based on dynamic response of passing heavy vehicle[J]. China Journal of Highway and Transport, 2024, 37(08): 77-87.
[2] 周勇军, 薛宇欣, 高徐军, 等. 基于模态叠加法的公路简支梁桥动力放大系数研究[J]. 交通运输工程学报, 2023, 23(06): 146-155.
ZHOU Yongjun, XUE Yuxin, GAO Xujun, et al. Research on dynamic amplification factor of highway simply supported girder bridge based on modal superposition method[J]. Journal of Traffic and Transportation Engineering, 2023, 23(06): 146-155.
[3] 刘伟, 赵春发, 娄会彬, 等. 基于虚拟激励法的磁浮车桥耦合系统随机振动分析[J]. 西南交通大学学报, 2024, 59(04): 823-831.
LIU Wei, ZHAO Chunfa, LOU Huibin, et al. Stochastic vibration analysis of maglev train-bridge coupling system based on pseudo excitation method[J]. Journal of Southwest Jiaotong University, 2024, 59(04): 823-831.
[4] 莫向前, 杨永斌, 史康, 等. 考虑薄壁箱梁阻尼下的车-桥耦合振动解析理论与应用[J]. 中国公路学报, 2024, 37(08): 1-16.
MO Xiangqian, YANG Yongbin, SHI Kang, et al. Analytical theory and application of vehicle-bridge interactions by considering the effects of damping for thin-walled beams[J]. China Journal of Highway and Transport, 2024, 37(08): 1-16.
[5] DENG L, YU Y, ZOU Q L, et al. State-of-the-art review on dynamic impact factors of highway bridges[J]. Journal of Bridge Engineering, 2015, 20(5): 04014080.
[6] 邓露, 陈雅仙, 韩万水, 等. 中小跨径公路混凝土简支梁桥冲击系数研究及建议取值[J]. 中国公路学报, 2020, 33(01): 69−78.
DENG Lu, CHEN Yaxian, HAN Wanshui, et al.Studying impact factors for short-and medium-span simply supported concrete highway bridges and its suggested values[J]. China Journal of Highway and Transport, 2020, 33(01): 69−78.
[7] 程俭廷, 林梓康, 吴晓生, 等. 基于二轴车过桥振动响应的桥梁模态特性识别方法研究[J]. 振动与冲击, 2024, 43(13): 78-89.
CHENG Jianting, LIN Zikang, WU Xiaosheng, et al. Identification method of bridge modal characteristics based on vibration response of 2⁃axle vehicle passing through bridge[J]. Journal of Vibration and Shock, 2024, 43(13): 78-89.
[8] 范晨, 王莹, 李兆霞. 以疲劳评估为目标的大跨钢箱梁桥车桥耦合动力分析方法[J]. 振动与冲击, 2020, 39(06): 236-242.
FAN Chen, WANG Ying, LI Zhaoxia. Vehicle-bridge coupling dynamic analysis method for the fatigue assessment of a long-span steel box-girder bridge[J]. Journal of Vibration and Shock, 2020, 39(06): 236-242.
[9] 高庆飞, 张坤, 刘晨光, 等. 移动车辆荷载作用下桥梁冲击系数的若干讨论[J]. 哈尔滨工业大学学报, 2020, 52(03): 44−50.
GAO Qingfei, ZHANG Kun, LIU Chenguang, et al. Discussions on the impact coefficient of bridges under the load of moving vehicles loads [J]. Journal of Harbin Institute of Technology, 2020, 52(03): 44−50.
[10] EN 1991-2: Eurocode 1: Actions on structures-part 2: Traffic loads on bridges[J]. COMITÉ EUROPÉEN DE NORMALISATION, Brussels, 2002.
[11] Yang Y B, Lin C W. Vehicle-bridge interaction dynamics and potential applications. Journal of Sound and Vibration 2005; 284 (1-2): 205–226.
[12] 蔺鹏臻, 王亚朋. 基于车-桥耦合振动的铁路钢管混凝土系杆拱桥冲击系数研究[J]. 振动与冲击, 2021, 40(06): 115-120.
LIN Pengzhen, WANG Yapeng. Impact factor calculation of railway concrete-filled steel tubular tied-arch bridges based on vehicle-bridge coupling vibration analysis[J]. Vibration and Shock, 2021, 40(06): 115-120.
[13] 王宁波, 周逸, 周德. 基于实际影响线的移动车辆过桥动力放大系数计算方法[J]. 中南大学学报(自然科学版), 2020, 51(07): 1853−1861.
WANG Ningbo, ZHOU Yi, ZHOU De. A calculation method for moving vehicle induced bridge dynamic amplification factor based on influence line[J]. Journal of Central South University (Science and technology), 2020, 51(07): 1853−1861.
[14] 韩万水, 闫君媛, 武隽, 等.基于长期监测的特重车流作用下桥梁动态放大系数研究[J]. 振动工程学报, 2014, 27(2): 222−232.
HAN Wanshui, YAN Junyuan, WU Jun, et al. Analysis of bridge dynamic amplification factors under extra-heavy truck scenarios based on long-term monitoring date[J]. Journal of Vibration Engineering, 2014, 27(2): 222−232.
[15] DENG L, CAI C S, Barbato M. Reliability-Based Dynamic Load Allowance for Capacity Rating of Prestressed Concrete Girder Bridges[J]. Journal of Bridge Engineering, 2011, 16(6): 872-880.
[16] OBRIEN E J, RATTIGAN P, GONZALEZ A, et al. Characteristic dynamic traffic load effects in bridges[J]. Engineering Structures, 2009, 31(7): 1607-1612.
[17] 徐文涛, 张建波, 魏星. 车桥随机振动作用下的桥梁动态影响线研究[J]. 应用数学和力学, 2015, 36(09): 914−923.
XU Wentao, ZHANG Jianbo, WEI Xing. Study on the dynamic influence line of bridge under the action of random vibration of vehicle bridge[J]. Journal of Applied Mathematics and Mechanics, 2015, 36(09): 914−923.
[18] OBRIEN E J, CANTERO D, ENRIGHT B, et al. Characteristic dynamic increment for extreme traffic loading events on short and medium span highway bridges[J]. Engineering Structures, 2010, 32(12): 3827−3835.
[19] CAREY C, OBRIEN E J, MALEKJAFARIAN A, et al. Direct field measurement of the dynamic amplification in a bridge[J]. Mechanical Systems and Signal Processing, 2017, 85: 601−609.
[20] 肖柏军, 赵雨森, 王宁波. 公路桥梁动力放大系数合理值及影响因素研究[J]. 铁道科学与工程学报, 2022, 19(01): 171-180.
XIAO Baijun, ZHAO Yusen, WANG Ningbo, et al. Study on reasonable value of dynamic amplification factor and its influence factor for highway bridge[J]. Journal of Railway Science and Engineering, 2022, 19(01): 171-180.
[21] 殷新锋, 邓露. 随机车流作用下桥梁冲击系数分析[J]. 湖南大学学报(自然科学版), 2015, 42(09): 68-75.
YIN Xinfeng, DENG Lu. Analysis of bridge impact coefficient under random traffic flow[J]. Journal of Hunan University(Natural Science Edition), 2015, 42(09): 68-75.
[22] 李子超, 黎剑安, 冯东明. 基于车桥耦合理论的斜拉桥拉索动力冲击系数及影响因素分析[J]. 振动与冲击, 2024, 43(07): 67-74.
LI Zichao, LI Jian'an, FENG Dongming. Analysis of dynamic impact coefficient and influencing factors of cable-stayed bridge cables based on vehicle-axle coupling theory[J]. Vibration and Shock, 2024, 43(07): 67-74.
[23] 吴大宏, 屠嘉杨, 苏伟, 等. 车桥耦合振动高速铁路典型桥梁动力系数研究[J]. 华东交通大学学报, 2022, 39(02): 17-26.
WU Dahong, TU Jiayang, SU Wei, et al. Study on dynamic coefficients of typical bridges of vehicle-bridge coupling vibration high-speed railway[J]. Journal of East China Jiaotong University, 2022, 39(02): 17-26.
[24] 罗刚, 刘志军. 高墩大跨铁路连续刚构桥动力特性分析研究[J]. 铁道工程学报, 2016, 33(10): 68-72.
LUO Gang, LIU Zhijun. Analysis of dynamic characteristics of continuous rigid frame bridge of high-pier long-span railway[J]. Journal of Railway Engineering, 2016, 33(10): 68-72.
[25] 周勇军, 薛宇欣, 李冉冉, 等. 桥梁冲击系数理论研究和应用进展[J]. 中国公路学报, 2021, 34(04): 31-50.
ZHOU Yongjun, XUE Yuxin, LI Ranran, et al. State of the art of theory and applications of bridge dynamic load allowance[J]. China Journal of Highway and Transport, 2021, 34(04): 31-50.
[26] 中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60—2015[S]. 北京: 人民交通出版社, 2015.
Ministry of Transport of the People’s Republic of China. General code for design of highway bridges and culverts: JTG D60—2015[S]. Beijing: People’s Transportation Press, 2015.

PDF(1284 KB)

Accesses

Citation

Detail

段落导航
相关文章

/