针对背景噪声和不同工况下单一尺度模型特征提取能力有限,引起滚动轴承寿命状态识别率下降的问题,提出基于多尺度改进深度残差收缩网络(Multi Scale-Improved Deep Residual Shrinkage Network, MS-IDRSN)的滚动轴承寿命状态识别方法。首先,在深度残差收缩单元中引入改进的阈值函数提升网络的抗噪性能,并减小降噪过程中的寿命状态信息丢失;然后,采用不同卷积核尺寸的深度残差收缩单元构建特征提取器,避免单一尺度感受野引起在不同工况下的特征提取能力下降。最后,利用最大均值差异损失适配源域与目标域特征的特征分布,通过Softmax分类器实现在不同工况的轴承寿命状态识别。在PRONOSTIA数据集和自测轴承数据集上验证了所提方法的可行性和有效性,结果表明所提方法具有较好的抗噪性能和泛化性能,在考虑背景噪声和不同工况条件下相比对比方法的寿命状态识别率提升7.6%至46.5%。
Abstract
A multi-scale improved deep residual shrinkage network (MS-IDRSN) based rolling bearing life state identification method is proposed to address the issue of reduced domain adaptation performance caused by background noise interference in spatial rolling bearing data under different operating conditions, resulting in a decrease in accuracy of life state recognition. Firstly, an improved threshold function is introduced into the contraction layer of the deep residual contraction network to enhance the network's noise resistance and reduce the loss of life state information during the denoising process; Then, using convolutional kernels of different sizes to obtain deep fusion denoising features, the generalization ability of the features in noisy backgrounds is improved. Finally, by minimizing the maximum mean difference and adapting the feature distribution of the source domain and target domain features, the recognition of bearing life status under different operating conditions is achieved. The applicability and effectiveness of MS-IDRSN were validated on the PRONOSTIA dataset and self-test bearing dataset, and the results showed that the proposed method has good noise resistance and generalization performance. Under high noise conditions, compared with the comparison method, the accuracy of life state recognition improved by 7.6% to 46.5%.
关键词
滚动轴承 /
寿命状态识别 /
阈值函数 /
多尺度特征 /
深度残差收缩网络
{{custom_keyword}} /
Key words
Rolling bearings /
Life state recognition /
Threshold function /
Multi-scale feature fusion /
Deep residual shrinkage network
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DONG S, WEN G, LEI Z, et al. Transfer learning for bearing performance degradation assessment based on deep hierarchical features[J]. ISA Transactions, 2021, 108: 343-355.
[2] 吴昊年, 陈仁祥, 胡小林, 等. 改进均衡分布适配的滚动轴承寿命阶段识别[J]. 振动工程学报, 2021, 34(01): 194-201.
WU Haonian, CHEN Renxiang, HU Xiaolin, et al. Improving the Life Stage Identification of Rolling Bearings with Balanced Distribution Adaptation [J] Journal of Vibration Engineering, 2021, 34 (01): 194-2011.
[3] 刘峰良, 李锋, 汤宝平, 等. 基于类对比簇分配异构迁移学习的空间滚动轴承寿命阶段识别[J]. 工程科学与技术, 2024, 56(01): 256-266.
LIU Fengliang, LI Feng, TANG Baoping, et al. Space Rolling Bearing Life Stage Identification Based on Heterogeneous Transfer Learning of Class Comparison Cluster Allocation [J] Engineering Science and Technology, 2024, 56 (01): 256-266.
[4] 王腾, 李锋, 罗玲, 等. 基于双尺度柔性原型迁移网络的空间滚动轴承寿命阶段识别[J]. 机械工程学报, 2022, 58(21): 114-125.
WANG Teng, LI Feng, LUO Ling, et al. Life stage identification of spatial rolling bearings based on dual scale flexible prototype transfer network [J] Journal of Mechanical Engineering, 2022, 58 (21): 114-125.
[5] Dong S J, Sheng J L, Tang B P, et al. Bearings in simulated space conditions running state detection based on Tsallis entropy-KPCA and optimized fuzzy c-means model[J]. Noise Control Engineering Journal, 2017, 65(2):62-70.DOI:10.3397/1/376426.
[6] ZHANG B,ZHANG S H,LI W H. Bearing performance degradation assessment using long short-term memory recurrent network[J]. Computers in Industry,2019,106:14-29.
[7] WANG H D, DENG S E, YANG J X, et al. Parameter-Adaptive VMD Method Based on BAS Optimization Algorithm for Incipient Bearing Fault Diagnosis[J]. Mathematical Problems in Engineering, 2020, 2020: 5659618.
[8] 陈仁祥, 张晓, 朱玉清, 等. 基于深度残差收缩迁移网络的复杂工况下滚动轴承故障诊断[J]. 振动与冲击, 2024, 43(03): 194-200.
CHEN Renxiang, ZHANG Xiao, ZHU Yuqing, et al. Fault diagnosis of rolling bearings under complex working conditions based on deep residual shrinkage transfer network [J] Vibration and Shock, 2024, 43 (03): 194-200.
[9] 杨大春, 孙宇林, 张春萌, 等. 基于改进残差网络深度子域适应的变工况下滚动轴承故障诊断方法[J/OL]. 轴承, 2022. https://link.cnki.net/urlid/ 41.1148.TH.20221226. 1556.002.
YANG Dachun, SUN Yulin, ZHANG Chunmeng, et al. A fault diagnosis method for rolling bearings under variable operating conditions based on improved residual network deep subdomain adaptation [J] Bearings, 2022 .https://link.cnki.net/urlid/41.1148. TH.20221226. 1556.002.
[10] 董绍江, 裴雪武, 汤宝平, 等. 基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法[J]. 机械工程学报, 2021, 57(15): 105-115.
DONG Shaojiang, PEI Xuewu, TANG Baoping, et al. A rolling bearing life state recognition method based on FNER performance degradation index and IDRSN * [J] Journal of Mechanical Engineering, 2021, 57 (15): 105-115
[11] ZHAO M, ZHONG S, FU X, et al. Deep Residual Shrinkage Networks for Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, PP(99): 1-1.
[12] NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]. IEEE International Conference on Prognostics and Health Management. Besanon:PHM,2012.
[13] 王志颖, 李天福, 许文纲, 等. 降噪混合注意力变分自编码器及其在轴向柱塞泵故障诊断中的应用[J/OL]. 机械工程学报, 2023:. https:// link.cnki.net/urlid/11.2187.TH.20230628.1423.028.
WANG Zhiying, LI Tianfu, XU Wengang, et al. Noise Reduction Hybrid Attention Variational Autoencoder and Its Application in Fault Diagnosis of Axial Plunger Pump [J] Journal of Mechanical Engineering, 2023:. https://link.cnki.net/urlid/11.2187.TH.20230628.1423.028.
[14] 王赛赛, 陈捷, 王华, 等. 基于改进DBN的回转支承寿命状态识别[J]. 振动与冲击, 2020, 39(07): 238-244+259.
WANG Saisai, CHEN Jie, WANG Hua, et al Life state identification of rotary bearings based on improved DBN [J] Vibration and Shock, 2020, 39 (07): 238-244+259.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}