掘进履带行驶系统作业于煤矿巷道恶劣地形和复杂环境中,其关键承载部件驱动轮长期承受不均匀载荷,导致轮齿损伤甚至断裂,影响掘进装备的正常生产作业和行驶平稳性。为了及时检测驱动轮轮齿损伤状态,避免故障扩大和降低维修成本,在阶次跟踪算法、包络谱分析、线性峭度算法和滤波算法的基础上,提出了一种适用于变转速机械的阶域线性峭度算法。通过对只含基频、包含基频和谐频的合成仿真信号进行包络谱分析及特征分布统计,表明线性峭度相较于峭度更具优势。通过使用变转速和多噪声振动信号进行驱动轮齿损伤状态识别,并与快速谱峭度、阶域线性峭度等算法进行对比分析,表明阶域线性峭度算法具有适用性和鲁棒性。该方法可有效提高故障检测的准确性和效率,为履带行驶系统的安全健康运行提供了有力保障。
Abstract
The crawler maneuvering system used for tunneling operates in the harsh terrain and complex environment of coal mine tunnels. The driving wheel, as a key load-bearing component, is subjected to uneven loads for extended periods, leading to damage or even fracture of the wheel teeth. This can impact the normal production operation and smooth travel of tunneling equipment. In order to detect the damage state of the driving wheel gear teeth in time, avoid the expansion of the fault, and red
uce maintenance costs, an order-domain linear kurtosis algorithm for variable speed machinery is proposed. This algorithm is based on the order tracking algorithm, envelope spectral analysis, linear kurtosis algorithm, and filtering algorithm. Through envelope spectrum analysis and feature distribution statistics of synthetic simulation signals containing only fundamental frequency, fundamental frequency, and harmonic frequency, it is shown that linear kurtosis has more advantages than kurtosis. By using variable speed and multi-noise vibration signals to detect the damage state of driving gear teeth, and comparing it with algorithms such as fast spectral kurtosis and order domain linear kurtosis, it is shown that the order domain linear kurtosis algorithm has applicability and robustness. This method can effectively improve the accuracy and efficiency of fault detection, providing a strong guarantee for the safe and healthy operation of the crawler maneuvering system.
关键词
履带行驶系统 /
轮齿损伤 /
线性峭度算法 /
变转速 /
频带定位
{{custom_keyword}} /
Key words
Crawler maneuvering system /
Wheel teeth damage /
Linear kurtosis algorithm /
Variable speed /
Frequency band localization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张宏,张晓鹍,石涛. 连采机履带行走机构动力学特性与疲劳寿命分析[J]. 煤炭科学技术, 2016, 44(11):110-115.
Zhang Hong, Zhang Xiaokun, Shi Tao. Analysis on dynamics features and fatigue life of crawler walking mechanism applied in continuous miner[J]. Coal Science and Technology, 2016, 44(11):110-115.
[2] 王川伟,马宏伟,薛旭升,等. 煤矿履带巡检机器人多体动力学建模及越障仿真[J]. 西安科技大学学报, 2020,40(05):790-796.
WANG Chuan-wei, MA Hongwei, XUE Xusheng, et al. Multi-body dynamics modeling and obstacle surmounting simulation of tracked inspection robot in coal mine[J]. Journal of Xi’an University of Science and Technology, 2020, 40(05):790-796.
[3] 张志宏,张宏,陈有,等. 基于遗传神经网络的履带行驶系统载荷识别方法[J]. 振动与冲击, 2022, 41(03):54-61.
ZHANG Zhihong, ZHANG Hong, CHEN You, et al. Load identification method of track driving system based on genetic neural network[J]. Journal of vibration and shock, 2022, 41(03):54-61.
[4] Bossley K M, Mckendrick R J, Harris C J, et al.Hybrid Computed Order Tracking[J]. Mechanical Systems and Signal Processing, 1999, 13(4):627-641.
[5] 张爱兵. 变转速工况下滚动轴承故障特征高精度提取方法研究[D]. 重庆大学, 2020.
Zhang Aibing. Research on fault feature extraction method for rolling bearing under variable speed condition[D]. CHONGQING University, 2020.
[6] 杨新敏,郭瑜,华健翔. 基于阶频谱相干的变转速滚动轴承内外圈复合故障特征分离提取[J]. 振动与冲击, 2022, 41(22):211-218.
YANG Xinmin, GUO Yu, HUA Jianxiang. Feature separation and extraction of compound faults of inner and outer rings of rollling bearings at variable speed based on order-frequency spectral coherence[J]. Journal of vibration and shock, 2022, 41(22):211-218.
[7] Li Yongzhuo, Ding Kang, He Guolin, et al. Non-stationary vibration feature extraction method based on sparse decomposition and order tracking for gearbox fault diagnosis[J]. Measurement, 2018, 124:453-469.
[8] Antoni Jérôme. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2):282-307.
[9] Antoni Jérôme. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1):108-124.
[10] Lei Yaguo, Lin Jing, He Zhengjia, et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2011, 25(5):1738-1749.
[11] 张忠强,张新,王家序,等. 基于重加权谱峭度方法的航空发动机故障诊断[J]. 航空学报, 2022, 43(09):148-157.
ZHANG Zhongqiang, ZHANG Xin, WANG Jiaxu, et al. Reweighted kurtogram for aero-engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(09):148-157.
[12] 任勇. 变转速旋转机械关键零部件故障诊断研究[D]. 中国矿业大学,2019.
Ren Yong. Fault Diagnosis for Key Components of Rotating Machinery under Varying Speeds[D]. China University of Mining and Technology, 2019.
[13] 李红贤,汤宝平,韩延,等. 基于增强熵权峭度图的滚动轴承最优频带解调的故障诊断[J]. 振动与冲击, 2019, 38(17):24-31.
LI Hongxian, TANG Baoping, HAN Yan, et al. Fault diagnosis of rolling bearings using optimal demodulation frequency band based on enhanced entropy weight kurtosis graph[J]. Journal of vibration and shock, 2019, 38(17):24-31.
[14] Barszcz Tomasz,Jabłoński Adam. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram[J]. Mechanical Systems and Signal Processing, 2011, 25(1):431-451.
[15] Moshrefzadeh Ali,Fasana Alessandro. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 105:294-318.
[16] Hosking J. R. M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1990, 52(1):105-124.
[17] Liu Shaopeng,Hou Shumin,He Kongde, et al. L-Kurtosis and its application for fault detection of rolling element bearings[J]. Measurement, 2018, 116:523-532.
[18] Huang Huan,Baddour Natalie. Bearing vibration data collected under time-varying rotational speed conditions[J]. Data in Brief, 2018, 21:1745-1749.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}