自适应双阻尼小波字典的轴承复合故障诊断方法

胡俊锋1, 赵丽娟2, 严雪竹2, 张龙2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 239-246.

PDF(2491 KB)
PDF(2491 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 239-246.
故障诊断分析

自适应双阻尼小波字典的轴承复合故障诊断方法

  • 胡俊锋1,赵丽娟2,严雪竹2,张龙*2
作者信息 +

Bearing compound fault diagnosis method with adaptive dual-damped wavelet dictionary

  • HU Junfeng1, ZHAO Lijuan2, YAN Xuezhu2, ZHANG Long*2
Author information +
文章历史 +

摘要

针对强背景噪声下难以准确提取出轴承复合故障中各故障类型有效特征的问题,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和稀疏表征的轴承复合故障诊断方法。该方法首先通过MCKD算法实现复合故障的分离,并达到初步增强故障冲击特征的效果;然后进行稀疏表征字典设计先验知识分析,构造与真实故障脉冲响应更加匹配的双阻尼非对称小波参数字典,结合正交匹配追踪(orthogonal matching pursuit, OMP)算法,稀疏重构出各故障特征;最后对重构分量做包络谱分析,提取轴承故障特征频率。考虑到MCKD算法和非对称小波中的参数选取决定着最终的特征提取效果,使用鲸鱼优化算法(whale optimization algorithm, WOA)实现参数自动优化选取。仿真数据和试验台数据分析结果表明,所提出的方法可有效提取出轴承复合故障中的各类故障成分,且相比常用的单阻尼Laplace小波字典具有一定的优越性。

Abstract

Aiming at the problem of extracting the effective features of each signal component for bearing compound fault under heavy background noise, a novel compound fault diagnosis method based on maximum correlated kurtosis deconvolution(MCKD) and sparse representation is proposed. Firstly, the MCKD algorithm is used to separate the compound faults and enhance the fault impulse responses. Next, a priori knowledge analysis of the sparse representation dictionary design is carried out to construct a double-damped asymmetric wavelet parameter dictionary that better matches the real fault impulse response, which is combined with Orthogonal Matching Pursuit (OMP) algorithm to sparsely reconstruct each fault feature. Finally, the reconstructed components are analyzed by envelope spectrum to extract fault characteristic frequencies. Considering that parameter selection in the MCKD algorithm and asymmetric wavelets determines the final feature extraction effect, the Whale Optimization Algorithm (WOA) is used to achieve automatic and optimal parameter selection. The analysis results of the simulated signals and the test-bed signals show that the proposed method can effectively extract all kinds of fault components in bearing compound faults, and has certain superiority over the commonly used single-damped Laplace wavelet dictionary.

关键词

复合故障 / 最大相关峭度解卷积(MCKD)算法 / 双阻尼非对称小波 / 稀疏分解 / 特征提取

Key words

compound fault / maximum correlated kurtosis deconvolution(MCKD) algorithm / double-damped asymmetric wavelet / sparse representation / feature extraction. 

引用本文

导出引用
胡俊锋1, 赵丽娟2, 严雪竹2, 张龙2. 自适应双阻尼小波字典的轴承复合故障诊断方法[J]. 振动与冲击, 2025, 44(7): 239-246
HU Junfeng1, ZHAO Lijuan2, YAN Xuezhu2, ZHANG Long2. Bearing compound fault diagnosis method with adaptive dual-damped wavelet dictionary[J]. Journal of Vibration and Shock, 2025, 44(7): 239-246

参考文献

[1] 张龙,赵丽娟,杨锦雯,等. 动力学小波字典驱动的轴承故障个性化稀疏诊断[J]. 电子测量与仪器学报, 2022, 36(07): 213-222.
ZHANG Long, ZHAO Li-juan, YANG Jin-wen, et al. Personalised sparse diagnosis of bearing faults driven by kinetic wavelet dictionary[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(07): 213-222.
[2] 刘好博,郝洪涛,丁文捷.基于IMCKD和MCCNN的滚动轴承故障诊断方法[J]. 振动与冲击, 2022, 41(07): 241-249.
LIU Hao-bo,HAO Hong-tao,DING Wen-jie. Rolling bearing fault diagnosis method based on IMCKD and MCCNN[J]. Vibration and Shock, 2022, 41(07): 241-249.
[3] FAN J, QI Y S, Gao X J, et al. Compound fault diagnosis of rolling element bearings using multipoint sparsity–multipoint optimal minimum entropy deconvolution adjustment and adaptive resonance-based signal sparse representation [J]. Journal of Vibration and Control, 2021(27), 1212–1230.
[4] 张龙,蔡秉桓,熊国良,等.优化指标一致的滚动轴承故障复合诊断方法[J]. 振动与冲击, 2021, 40(09): 237-245.
ZHANG Long,CAI Bing-huan,XIONG Guo-liang, et al. Optimisation of a composite diagnostic method for rolling bearing faults with consistent indicators[J]. Vibration and Shock, 2021, 40(09): 237-245.
[5] 刘兴教,赵学智,李伟光,等. 基于峭度原则的EEMD-MCKD的柔性薄壁轴承故障特征提取[J]. 振动与冲击, 2021, 40(01): 157-164.
LIU Xing-jiao,ZHAO Xue-zhi,LI Wei-guang, et al. Fault feature extraction of flexible thin-walled bearings by EEMD-MCKD based on craggy principle[J]. Vibration and Shock, 2021, 40(01): 157-164.
[6] 刘方,翟涛涛,侯超强,等. 基于多普勒调制时移Laplace小波的列车轴承故障声信号瞬态成分快速提取方法[J]. 仪器仪表学报, 2022, 43(03): 40-48.
LIU Fang, ZHAI Tao-tao, HOU Chao-qiang, et al. Fast extraction of transient components of train bearing fault acoustic signal based on Doppler modulated time-shifted Laplace wavelet[J]. Journal of Instrumentation, 2022, 43(03): 40-48.
[7] 郗涛,葛增元,王莉静.基于参数优化的VMD与DBN的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2022(12): 57-61.
XI Tao,GE Zeng-yuan,WANG Li-jing. Fault diagnosis of rolling bearing based on parameter optimised VMD and DBN[J]. Combined machine tools and automatic machining technology, 2022(12): 57-61.
[8] 宋泽树,黄伟国,石娟娟,等.广义平滑对数正则化稀疏分解方法研究及其在齿轮箱复合故障诊断中的应用[J]. 机械工程学报, 2022, 58(23): 123-137.
SONG Ze-shu,HUANG Wei-guo,SHI Juan-juan, et al. Research on generalised smooth logarithmic regularised sparse decomposition method and its application to composite fault diagnosis of gearboxes[J]. Journal of Mechanical Engineering, 2022, 58(23): 123-137.
[9] LI J M, TAO J X, DING, W M, et al. Period-assisted adaptive parameterized wavelet dictionary and its sparse representation for periodic transient features of rolling bearing faults[J]. Mechanical Systems and Signal Processing, 169, 108796.
[10] DENG F Y, QIANG Y W, YANG S P, et al. Sparse representation of parametric dictionary based on fault impact matching for wheelset bearing fault diagnosis[J]. ISA transactions, 2021, 110: 368-378.
[11] 王华庆,任帮月,宋浏阳,等.基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J].机械工程学报, 2019, 55(07): 35-43.
WANG Hua-qing,REN Bang-yue,SONG Liu-yang, et al. A sparse representation feature enhancement method based on termination criterion for improved K-SVD dictionary learning[J]. Journal of Mechanical Engineering, 2019, 55(07): 35-43.
[12] 樊薇,李双,蔡改改,等.瞬态成分Laplace小波稀疏表示及其轴承故障特征提取应用[J]. 机械工程学报, 2015, 51(15): 110-118.
FAN Wei,LI Shuang,CAI Chang-gui, et al. Transient component Laplace wavelet sparse representation and its application to bearing fault feature extraction[J]. Journal of Mechanical Engineering, 2015, 51(15): 110-118.
[13] JIANG F, DING K, HE G L, et al. Sparse dictionary design based on edited cepstrum and its application in rolling bearing fault diagnosis[J]. Journal of Sound and Vibration, 2021, 490: 115704.
[14] Deng W, Li Z, Li X, et al. Compound fault diagnosis using optimized MCKD and sparse representation for rolling bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-9.
[15] WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018: 1-12.

PDF(2491 KB)

68

Accesses

0

Citation

Detail

段落导航
相关文章

/