模态测量始终是振动控制的首要任务。在对压电器件振动模态研究中,采用了一种基于光学偏转法的模态测量技术。该技术利用激光的高准直性,通过压电振子反射激光并在光屏上成像来捕获偏转角度。精确控制位移平台和摄像头,高效地获取不同位置的反射光点轨迹。通过图像识别算法处理提取表面各点的梯度信息,并应用梯度数值积分、G2S算法对曲面进行重构。与激光多普勒测振法进行对比,结果表明,该方法得到模态振型和位移与理论模型以及现行测量方法高度一致,证实了该测量方法的有效性。此研究扩展了激光测角技术在振动测量领域的应用,并为测振技术从点位移到面形变的精确测量和曲面重构提供了一种新的方法。
Abstract
The primary task of vibration control has always been modal measured. In the study of vibration modes of piezoelectric components, a modal measurement technique based on optical deflection method was adopted. This technology utilizes the highest culmination of laser and captures the deflection angle by reflecting the laser through a piezoelectric oscillator and imaging it on the light screen. Accurately control the displacement platform and camera to efficiently obtain the trajectory of reflected light points at different positions. Extract gradient information of surface points through image recognition algorithm processing, and apply gradient numerical integration and G2S algorithm to reconstruct the surface. Compared with the laser Doppler vibration measurement method, the results show that the vibration mode and displacement obtained by this method are highly consistent with the theoretical model and current measurement methods, confirming the effectiveness of this measurement method. This study extends the application of laser angle measurement technology in the field of vibration measurement and provides a new method for precise measurement and surface reconstruction of vibration measurement technology from point displacement to surface deformation.
关键词
压电器件 /
振动模态测量 /
激光测角法 /
梯度场三维重建
{{custom_keyword}} /
Key words
Piezoelectric devices /
Vibration mode measurement /
Laser angle measurement method /
3D reconstruction of gradient field
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 贺文宇,丁绪聪,任伟新. 环境激励下移动车辆对桥梁模态参数识别的影响研究[J]. 振动与冲击:工学版,2021, 40(03): 48-53.
HE Wen-yu, DING Xu-cong, REN Wei-xin. Research on the Influence of Moving Vehicles on Modal Parameter Identification of Bridges under Environmental Excitation[J]. Journal of vibration and shock, 2021, 40(03): 48-53.
[2] 周翠,李东升,李宏男. 结构模态测试传感器位置优选[J]. 振动工程学报,2014, 27(01): 84-90.
ZHOU Cui, LI Dong-sheng, LI Hong-nan. Optimal selection of sensor positions for structural modal testing[J]. Journal of vibration engineering, 2014, 27(01): 84-90.
[3] 孙凌宇,秦红亮,师瑞卓. 基于激光雷达的移动剖面式三维形貌重建方法研究[J]. 应用激光,2023, 43(10): 136-147.
SUN Ling-yu, QIN Hong-liang, SHI Rui-zhuo. Research on Moving Profile 3D Morphology Reconstruction Method Based on Lidar[J]. APPLIED LASER, 2023, 43(10): 136-147.
[4] Evans D R, Craig V. Sensing cantilever beam bending by the optical lever technique and its application to surface stress[J]. JOURNAL OF PHYSICAL CHEMISTRY B. 2006, 110(11): 5450-5461.
[5] Barb M D, Morris A B, Maass-Moreno R, et al. Versatile, high-speed force transducer using a laser diode beam as an optical lever[J]. JOURNAL OF APPLIED PHYSIOLOGY. 2000, 88(1): 308-314.
[6] Kohl M J, Abdel-Khalik S I, Jeter S M, et al. A microfluidic experimental platform with internal pressure measurements[J]. SENSORS AND ACTUATORS A-PHYSICAL. 2005, 118(2): 212-221.
[7] Hsiao C C, Peng C Y, Liu T S. An optical lever approach to photodetector measurements of the pickup-head flying height in an optical disk drive[J]. MEASUREMENT SCIENCE AND TECHNOLOGY. 2006, 17(8): 2335-2342.
[8] Luo Y, Feng R, Li X D, et al. A simple approach to determine the mode shapes of Chladni plates based on the optical lever method[J]. EUROPEAN JOURNAL OF PHYSICS. 2019, 40(6).
[9] Stark R W. Optical lever detection in higher eigenmode dynamic atomic force microscopy[J]. REVIEW OF SCIENTIFIC INSTRUMENTS. 2004, 75(11): 5053-5055.
[10] Gao W, Huang P, Yamada T, et al. A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers[J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY. 2002, 26(4): 396-404.
[11] Tsai J H. Replacing the optical-lever method with the method using the spot radius of a laser beam to determine the curvature of a material[J]. OPTICAL ENGINEERING. 2004, 43(3): 737-741.
[12] Mitsui T. Detection of Femtometer Deformations of Semiconductor Devices in Operation Using an Optical Lever[J]. JAPANESE JOURNAL OF APPLIED PHYSICS. 2008, 47(8): 6563-6565.
[13] Zhuang S Y, Zhao M R, Wang Z Y, et al. Measuring the Interaction Force Between a Droplet and a Super-hydrophobic Substrate by the Optical Lever Method[J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS. 2019(148).
[14] Yamaura Y, Nanya T, Imoto H, et al. Shape reconstruction from a normal map in terms of uniform bi-quadratic B-spline surfaces[J]. Computer-Aided Design. 2015, 63: 129-140.
[15] Thürmer G. Smoothing Normal Vectors on Discrete Surfaces While Preserving Slope Discontinuities[J]. Computer Graphics Forum. 2001, 20(2): 103-114.
[16] Harker M, O Leary P. Direct regularized surface reconstruction from gradients for Industrial Photometric Stereo[J]. Computers in Industry. 2013, 64(9): 1221-1228.
[17] Harker M, O Leary P. Regularized Reconstruction of a Surface from its Measured Gradient Field[J]. Journal of Mathematical Imaging and Vision. 2015, 51(1): 46-70.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}