基于多项式维数分解法的起落架参数不确定性量化分析

崔盼礼1, 2, 3, 4, 贺尔铭1, 2, 宋得军5, 杨正权2, 3, 4, 王彬文2, 3, 4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 286-292.

PDF(1861 KB)
PDF(1861 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 286-292.
航空航天

基于多项式维数分解法的起落架参数不确定性量化分析

  • 崔盼礼1,2,3,4,贺尔铭*1,2,宋得军5,杨正权2,3,4,王彬文2,3,4
作者信息 +

Quantitative analysis of landing gear parametric uncertainty based on polynomial dimensional decomposition method

  • CUI Panli1,2,3,4, HE Erming*1,2, SONG Dejun5, YANG Zhengquan2,3,4, WANG Binwen2,3,4
Author information +
文章历史 +

摘要

飞机起落架制造和加工过程中不确定性广泛存在,针对飞机起落架缓冲性能的求解问题,考虑油孔流量系数、气体多变指数的不确定性,首先建立了起落架二质量非线性动力学方程,构造了基于多项式维数分解(polynomial dimensional decomposition, PDD)方法的随机代理模型并进行了动力学分析,与蒙特卡洛模拟方法确定性分析得出的位移均值与标准差结果进行了对比,验证了PDD方法在处理起落架动力学这类非线性问题的正确性;后续使用PDD方法,分析油孔流量系数、气体多变指数在取不同的变异系数时二质量的响应均值、标准差以及概率特征的变化,研究二者的不确定性对起落架缓冲性能求解的影响。该研究所开展的油孔流量系数、气体多变指数不确定传播量化工作对后续起落架缓冲性能的可靠性设计具有一定的借鉴意义。

Abstract

Uncertainty widely exists in manufacturing and processing of aircraft landing gear. Here, aiming at solving problem of buffering performance of aircraft landing gear, considering uncertainty of oil hole flow coefficient and gas variability index, firstly, a two-mass nonlinear dynamic equation of landing gear was established, a random surrogate model based on the polynomial dimensional decomposition (PDD) method was constructed, and dynamic analysis was performed. The results were compared with displacement mean and standard deviation obtained with Monte Carlo simulation and deterministic analysis to verify the correctness of PDD method in dealing with the nonlinear problem of landing gear dynamics. Subsequently, PDD method was used to analyze changes in mean, standard deviation and probability characteristics of two masses’ responses when oil hole flow coefficient and gas variability index taking different variation coefficients, and study effects of their uncertainties on solving landing gear buffering performance. It was shown that quantification of uncertain propagation of oil hole flow coefficient and gas variability index performed here can have certain reference significance for reliability design of landing gear buffering performance in future.

关键词

起落架落震 / 非线性 / 不确定性参数 / 多项式维数分解(PDD)方法

Key words

landing gear drop / non-linearity / uncertainty parameter / polynomial dimensional decomposition (PDD) method

引用本文

导出引用
崔盼礼1, 2, 3, 4, 贺尔铭1, 2, 宋得军5, 杨正权2, 3, 4, 王彬文2, 3, 4. 基于多项式维数分解法的起落架参数不确定性量化分析[J]. 振动与冲击, 2025, 44(7): 286-292
CUI Panli1, 2, 3, 4, HE Erming1, 2, SONG Dejun5, YANG Zhengquan2, 3, 4, WANG Binwen2, 3, 4. Quantitative analysis of landing gear parametric uncertainty based on polynomial dimensional decomposition method[J]. Journal of Vibration and Shock, 2025, 44(7): 286-292

参考文献

[1]焦振江.飞机起落架动态性能仿真分析研究[D].西安:西北工业大学,2007.
[2]MILWITZKY, BENJAMIN C, FRANCIS E. Cook. Analysis of Landing-Gear Behavior[J].1952.
[3]COOK F E,MILWIZKY B. Effect of interaction on landing-gear behavior and dynamic loads in a flexible airplane structure[R]. Washington D.C: Technical Report Archive & Image Library,1955.
[4]WAHI K M. Oleo-pneumatic shock strut dynamic analysis and its real-time simulation[J]. Journal of Aircraft,1976,13(4): 303-308.
[5]周瑞鹏,宋德军,陈熠.基于ALTLAS舰载机起落架落震缓冲性能分析[J]. 航空科学技术,2022,33(1): 91-97.
ZHOU Ruipeng, SONG Dejun, CHEN Yi. Analysis of landing gear shock absorption performance based on ALTLAS carrier based aircraft[J].Aviation Science and Technology, 2022, 33(1): 91-97.
[6]张飞,白春玉,陈熠,等.舰载机前起落架缓冲性能参数敏感性研究[J].振动工程学报,2024,37(3): 505-511.
ZHANG Fei, BAI Chunyu, CHEN Yi, et al. Sensitivity study of buffering performance parameters for front landing gear of carrier based aircraft[J]. Journal of Vibration Engineering, 2024,37(3): 505-511.
[7]朱晨辰,王彬文,马晓利,等.考虑温度效应的起落架落震缓冲性能研究[J].应用力学学报,2023,40(1): 25-33.
ZHU Chenchen, WANG Binwen, MA Xiaoli, et al. Study on the landing gear shock absorption performance considering temperature effect[J]. Journal of Applied Mechanics, 2023,40(1): 25-33.
[8]邱志平,王晓军,许孟辉.工程结构不确定优化设计技术[M].北京:科学出版社,2013.
[9]万华平,邰永敢,钟剑,等.多项式混沌展开和最大熵原理的结构动力特性不确定性量化[J].振动工程学报,2019,32(4): 574-580.
WAN Huaping, TAI Yonggan, ZHONG Jian, et al. Uncertainty quantification of structural dynamic characteristics using polynomial chaotic expansion and maximum entropy principle[J]. Journal of Vibration Engineering, 2019,32(4): 574-580.
[10]FISHMAN G. Monte Carlo: concepts, algorithms, and applications[M]. New York: Springer Science & Business Media, 2013.
[11]XIU D B. Numerical methods for stochastic computations: a spectral method approach[M]. Princeton: Princeton University Press, 2010.
[12]熊芬芬, 陈江涛, 任成坤, 等. 不确定性传播的混沌多项式方法研究进展[J]. 中国舰船研究, 2021, 16(4): 19-36.
XIONG Fenfen, CHEN Jiangtao, REN Chengkun, et al. Research progress on chaotic polynomial methods for uncertainty propagation[J]. Chinese Ship Research, 2021, 16(4): 19-36.
[13]CHEN J B, JIE L. Dynamic response and reliability analysis of non-linear stochastic structures[J]. Probabilistic Engineering Mechanics, 2005, 20(1): 33-44.
[14]赵岩,刘凡,孙晓旭.不确定结构时域响应分析的多项式维数分解法[J].计算力学学报,2021,38(6): 722-728.
ZHAO Yan, LIU Fan, SUN Xiaoxu. Polynomial dimension decomposition method for time domain response analysis of uncertain structures[J]. Journal of Computational Mechanics, 2021,38(6): 722-728.
[15]丁勇为,张子豪,魏小辉,等.油孔几何参数对起落架落震动力学的影响研究[J].航空计算技术,2018,48(1): 30-33.
DING Yongwei, ZHANG Zihao, WEI Xiaohui, et al. Study on the influence of geometric parameters of oil holes on landing gear drop vibration mechanics[J]. Aerospace Computing Technology, 2018, 48(1): 30-33.

PDF(1861 KB)

113

Accesses

0

Citation

Detail

段落导航
相关文章

/