双捕能柱布置形式对无叶片风力机捕能效率的影响

刘奇良, 龚曙光, 谢桂兰, 唐芳, 梁志玮

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 37-44.

PDF(3289 KB)
PDF(3289 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 37-44.
振动理论与交叉研究

双捕能柱布置形式对无叶片风力机捕能效率的影响

  • 刘奇良,龚曙光*,谢桂兰,唐芳,梁志玮
作者信息 +

Effects of dual-energy harvesting column arrangement on energy harvesting efficiency of bladeless wind turbine

  • IU Qiliang, GONG Shuguang*, XIE Guilan, TANG Fang, LIANG Zhiwei
Author information +
文章历史 +

摘要

无叶片风力机基于风致涡激振动捕获风能,具有空间利用率高的优点。为提升无叶片风力机群的捕能效率,在单个捕能柱捕能效率研究的基础上,探讨工作风速下错列角度为 至 、间距比为1.5至7范围内、双捕能柱布置形式对其捕能效率、涡激振动响应以及尾涡结构的影响。所得结果表明:错列角度为 和 时,下游捕能柱的捕能效率小于单个捕能柱,而上游捕能柱的捕能效率随间距比增大而逐渐提升,当间距比为3.5时,约等于单个捕能柱;通过对比双捕能柱和单个捕能柱的平均效率,布置范围被分为三个区域,即增强区、抑制区和弱影响区;特别地,当间距比为2,错列角度为 时,双捕能柱的平均捕能效率达到单个捕能柱的2倍以上。

Abstract

Bladeless wind turbines harvest wind energy through wind-induced vortex vibration, boasting a high spatial utilization advantage. To enhance the energy harvesting efficiency of arrays for bladeless wind turbines, builds upon the research of energy harvesting efficiency in a single energy harvesting cylinder (EHC), the effects of arrangements for twin EHCs—considering stagger angles ranging from 0° to 90° and spacing ratios from 1.5 to 7—on the energy harvesting efficiency, vortex-induced vibration, and vortical structure at operational wind speeds are studied. The findings indicated that at stagger angles of 0° and 15°, the downstream EHC exhibits a lower energy-harvesting efficiency compared to a single EHC. In contrast, the upstream EHC’s efficiency increases with the spacing ratio, reaching equivalence with a single EHC at a spacing ratio of 3.5. By comparing the average efficiency of twin EHCs with that of a single one, the arrangements considered in this paper are classified into three regions: enhancement, suppression, and weak influence. Notably, the average efficiency of the twin EHCs increases more than twofold at a spacing ratio of 2 and a stagger angle of 90°.

关键词

无叶片风力机 / 涡激振动 / 捕能柱 / 布置形式 / 捕能效率

Key words

bladeless wind turbine / vortex-induced vibration / energy harvesting cylinder / arrangement / energy harvesting efficiency

引用本文

导出引用
刘奇良, 龚曙光, 谢桂兰, 唐芳, 梁志玮. 双捕能柱布置形式对无叶片风力机捕能效率的影响[J]. 振动与冲击, 2025, 44(7): 37-44
IU Qiliang, GONG Shuguang, XIE Guilan, TANG Fang, LIANG Zhiwei. Effects of dual-energy harvesting column arrangement on energy harvesting efficiency of bladeless wind turbine[J]. Journal of Vibration and Shock, 2025, 44(7): 37-44

参考文献

[1] El-Shahat A. Bladeless wind turbine as wind energy possible future technology[J]. Natural Gas & Electricity, 2016, 33(4): 16-20.
[2] Lv Y, Sun L, Bernitsas M M, et al. A comprehensive review of nonlinear oscillators in hydrokinetic energy harvesting using  flow-induced vibrations[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111388.
[3] Ali U, Islam M, Janajreh I, et al. Flow-induced vibrations of single and multiple heated circular cylinders: A review[J]. Energies, 2021, 14(24): 8496.
[4] Cajas J C, Rodríguez I, Salcedo E, et al. Aspect ratio influence on the vortex induced vibrations of a pivoted finite height cylinder at low Reynolds number[J]. Physics of Fluids, 2023, 35(8): 083606.
[5] Yazdi E A. Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine[J]. Smart Materials and Structures, 2018, 27(7): 075005.
[6] 龚曙光, 王翔, 谢桂兰等. 配重对拓宽无叶片捕能柱捕能区间的影响研究[J]. 机械工程学报, 2023, 59(04): 265-273.
GONG Shuguang, WANG Xiang, XIE Guilan, et al. Study on the Influence of Counterweight on Widening the Energy Harvesting Range of Bladeless Wind Turbine[J]. Journal of Mechanical Engineering, 2022, 59(04): 265-273.
[7] 邹琳,秦傲,杨耀宗等.波浪锥型圆柱流固耦合振动机理研究[J]. 振动与冲击, 2022, 41(03): 18-26.
ZOU Lin, QIN Ao, YANG Yaozong, et al. Fluid-structure coupled vibration mechanism of wave conical cylinder[J]. Journal of Vibration and Shock, 2022, 41(03): 18-26.
[8] 罗竹梅, 聂聪, 郭涛. 涡激振动驱动的柱群结构集中俘获海流能研究[J]. 太阳能学报, 2021, 42(04): 89-94.
LUO Zhumei, NIE Cong, GUO Tao. Study on centralized harvesting ocean current energy with column group structure by VIV[J]. Acta Energiae Solaris Sinica, 2021, 42(04): 89-94.
[9] Hishikar P, Dhiman S K, Tiwari A K, et al. Analysis of flow characteristics of two circular cylinders in cross-flow with varying Reynolds number: a review[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(10): 5549-5574.
[10] Xu W, Wu H, Jia K, et al. Numerical investigation into the effect of spacing on the flow-induced vibrations of two tandem circular cylinders at subcritical Reynolds numbers[J]. Ocean Engineering, 2021, 236: 109521.
[11] Zhou S, Wang J. Dual serial vortex-induced energy harvesting system for enhanced energy harvesting[J]. AIP Advances, 2018, 8(7): 075221.
[12] Gao Y, Yang B, Zhu H, et al. Flow induced vibration of two rigidly connected circular cylinders in different arrangements at a low Reynolds number[J]. Ocean Engineering, 2020, 217: 107741.
[13] Hu G, Wang J, Su Z, et al. Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference[J]. Applied Physics Letters, 2019, 115(7): 073901.
[14] Griffith M D, Jacono D L, Sheridan J, et al. Flow-induced vibration of two cylinders in tandem and staggered arrangements[J]. Journal of Fluid Mechanics, 2017, 833: 98-130.
[15] 龚曙光,吴兴豪,谢桂兰等.无叶片捕能柱变固有频率系统的涡激摆动特性及捕能效率[J].振动与冲击, 2021, 40(19): 180-186.
GONG Shuguang, WU Xinghao, XIE Guilan, et al. Vortex- induced swing characteristics and energy harvesting efficiency of bladeless wind turbine system with variable natural frequency[J]. Journal of Vibration and Shock, 2021, 40(19): 180-186.
[16] 龚曙光,徐凡业,谢桂兰,等.桅杆长径比对有限长锥台形捕能柱涡激横向摆动特性的影响[J].振动与冲击,2023,42(09):261-267.
GONG Shuguang, XU Fanye, XIE Guilan, et al. Effects of length-diameter ratio of mast on vortex-induced lateral swing characteristics of finite length cone-shaped energy capture column[J]. Journal of Vibration and Shock, 2023, 42(09): 261-267.
[17] Chen W, Ji C, Xu D, et al. Wake patterns of freely vibrating side-by-side circular cylinders in laminar flows[J]. Journal of Fluids and Structures, 2019, 89: 82-95.
[18] Schewe G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers[J]. Journal of Fluid Mechanics, 1983, 133: 265-285.
[19] Rahman M A A, Leggoe J, Thiagarajan K, et al. Numerical simulations of vortex-induced vibrations on vertical cylindrical structure with different aspect ratios[J]. Ships and Offshore Structures, 2016, 11(4): 405-423.
[20] 段松长, 赵西增, 叶洲腾等. 错列角度对双圆柱涡激振动影响的数值模拟研究[J]. 力学学报, 2018, 50(02): 244-253.
DUAN Songchang, ZHAO Xizeng, YE Zhouteng, et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244-253.
[21] Bao Y, Zhou D, Tu J. Flow interference between a stationary cylinder and an elastically mounted cylinder arranged in proximity[J]. Journal of Fluids and Structures, 2011, 27(8): 1425-1446.
[22] Zhao M. Flow induced vibration of two rigidly coupled circular cylinders in tandem and side-by-side arrangements at a low Reynolds number of 150[J]. Physics of Fluids, 2013, 25(12): 355-381.
[23] 及春宁, 陈威霖, 黄继露等. 串列双圆柱流致振动的数值模拟及其耦合机制[J]. 力学学报, 2014, 46(06): 862-870.
JI Chunning, CHEN Weilin, Huang Jilu, et al. Numerical investigation on flow-induced vibration of two cylinders in tandem arrangements and its coupling mechanisms[J]. Chinese Journal of Theoretical and Apllied Mechanics, 2014, 46(06): 862-870. 

PDF(3289 KB)

Accesses

Citation

Detail

段落导航
相关文章

/