为有效减少船舶推进轴系的纵向振动,提出动力减振系统与集成隔振系统耦合,探究其对振动抑制效果的影响。运用了结构弹性波原理构建出轴系纵振数学模型,通过与ANSYS模态分析结果对比验证了模型的正确性,采用拉格朗日方程法结合轴系一阶模态分别建立了三种不同系统下的振动微分方程,基于粒子群优化算法对减振系统参数优化,分别讨论了不同质量比、阻尼比以及频率比对系统的影响。研究表明:双系统耦合情况下,合理调节动力减振系统固有频率能最大程度叠加两系统的优点,为控制船舶轴系产生纵向振动时减振系统的安装设计提供了理论依据。
Abstract
To effectively mitigate the longitudinal vibration of the ship propulsion shafting, a coupling of the dynamic vibration damping system and the integrated vibration isolation system is proposed to investigate the impact effect on the vibration suppression. The structural elastic wave principle is employed to construct the mathematical model of the longitudinal vibration of the shafting. The accuracy of the model is verified by a comparison with the ANSYS modal analysis of published literature. The vibration differential equations under three different systems are established respectively by adopting the Lagrange equation method in combination with the first-order mode of the shafting. The parameters of the vibration damping system are optimized on the basis of particle swarm optimization algorithm. The influences of mass ratios, damping ratios, and frequency ratios on the vibration suppression of the system are discussed respectively. The research shows that the advantages of a single system can be superimposed to the maximum extent by adjusting the natural frequency of the dynamic damping system reasonably. It provides a theoretical basis for the installation design of the vibration damping system for the control of longitudinal vibration generated by the ship shafting.
关键词
船舶推进轴系 /
纵向振动 /
集成隔振系统 /
弹性波原理
{{custom_keyword}} /
Key words
Ship propulsion shaft system /
Longitudinal vibration /
Integrated vibration isolation system /
Elastic wave principle
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] XIE X, HE P, WU D, et al. Vibration attenuation of a propulsion shafting system by electromagnetic forces: Static thrust force balance and harmonic vibration suppression[J]. Mechanical Systems and Signal Processing, 2022, 179: 109406.
[2] ZHANG C, TIAN Y, YANG L, et al. Analytical study on longitudinal vibration characteristics of the coupled shaft and conical-cylindrical shell[J]. Ocean Engineering, 2021, 223: 108691.
[3] 谢基榕,沈顺根,吴有生. 推进器激励的艇体辐射噪声及控制技术研究现状[J]. 中国造船,2010,51(4):234-241.
XIE Ji-rong, SHEN Shun-gen, WU You-sheng. Research status of propeller stimulated hull radiated noise and control technology [J]. Shipbuilding of China, 2010, 51(4): 234-241
[4] HUANG Q, YAN X, WANG Y, et al. Numerical modeling and experimental analysis on coupled torsional-longitudinal vibrations of a ship's propeller shaft [J]. Ocean Engineering, 2017, 136: 272-282.
[5] 杨俊,王刚伟,田佳彬,等. 船舶推进轴系振动控制研究[J]. 振动与冲击,2020,39(10):24-31.
YANG Jun, WANG Gang-wei, TIAN Jia-bin, et al. Research on Vibration control of Marine Propulsion shafting [J]. Journal of Vibration and Shock, 2020, 39(10): 24-31.
[6] DYLEJKO P, KESSISSOGLOU N, TSO Y, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of Sound and Vibration, 2007, 300(1-2): 101-116.
[7] 刘耀宗,王宁,孟浩,等. 基于动力吸振器的潜艇推进轴系轴向减振研究[J]. 振动与冲击,2009,28(5):184-187.
LIU Yao-zong, WANG Ning, MENG Hao, et al. Research on axial vibration reduction of submarine propulsion shafting based on dynamic vibration absorber [J]. Journal of Vibration and Shock, 2009, 28(5): 184-187.
[8] 杨志荣,秦春云,饶柱石,等. 船舶推进轴系纵振动力吸振器设计及参数影响规律研究[J]. 振动与冲击,2012,31(16):48-51.
YANG Zhi-rong, QIN Chun-yun, RAO Zhu-shi, et al. Design and Parameter Influence of Longitudinal Vibration Dynamic Vibration Absorber for Marine Propulsion shafting [J]. Journal of Vibration and Shock, 2012, 31(16): 48-51.
[9] 田佳彬,黄自杰,王娟,等. 基于粒子阻尼器的船舶推进轴系减振研究[J]. 振动与冲击,2022,41(24):97-103.
TIAN Jia-bin, HUANG Zi-jie, WANG Juan, et al. Research on vibration reduction of Marine propulsion shafting based on Particle Dampers [J]. Journal of Vibration and Shock, 2022, 41(24): 97-103
[10] 夏极,李全超. 船舶轴系碟簧式纵向减振器动态特性分析[J]. 中国舰船研究,2021,16(3):194-199.
XIA Ji, LI Quan-chao. Dynamic characteristics analysis of disc-spring longitudinal shock absorber for ship shafting [J]. Chinese Ship Research, 2021, 16(3): 194-199.
[11] HUANG X, SU Z, HUA H. Application of a dynamic vibration absorber with negative stiffness for control of a marine shafting system[J]. Ocean Engineering, 2018, 155: 131-143.
[12] 杨志荣,李林桃,赵含,等. 考虑斜置弹簧阻尼的船舶轴系纵振高静低动隔振器的建模研究[J]. 船舶力学,2022,26(8):1218-1226.
YANG Zhi-rong, LI Lin-tao, ZHAO Han, et al. Modeling of High static and Low Dynamic Vibration Isolator for Ship shafting considering Inclined Spring damping [J]. Ship Mechanics, 2022, 26(8): 1218-1226.
[13] 何江洋,何琳,帅长庚,等. 船舶动力设备及推力轴承集成隔振系统设计[J]. 舰船科学技术,2013,35(1):77-81.
HE Jiang-yang, HE Lin, SHUAI Chang-geng, et al. Design of integrated vibration isolation System for Marine Power Equipment and Thrust Bearing [J]. Ship Science and Technology, 2013, 35(1): 77-81.
[14] 何江洋,何琳,徐伟,等. 船舶推力轴承弹性支承的轴系纵振减振性能研究[J]. 船舶力学,2017,21(5):613-620.
HE Jiang-yang, HE Lin, XU Wei, et al. Study on longitudinal vibration damping performance of shafting with Elastic Support of Marine thrust Bearing [J]. Ship Mechanics, 2017, 21(5): 613-620.
[15] 秦春云,杨志荣,饶柱石,等. 船舶推进轴系纵向振动抑制研究[J]. 噪声与振动控制,2013,33(3):147-152.
Qin Chun-yun, Yang Zhi-rong, Rao Zhu-shi, et al. Research on longitudinal Vibration suppression of Ship Propulsion shafting [J]. Noise and Vibration Control, 2013, 33(3): 147-152.
[16] 舰艇轴系强度与横向振动计算方法:CB/Z 208-2020[S].
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}