基于超声导波模态分离的全聚焦加权成像方法

蒋盖, 胡少鹏, 左浩

振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 8-15.

PDF(2568 KB)
PDF(2568 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (7) : 8-15.
振动理论与交叉研究

基于超声导波模态分离的全聚焦加权成像方法

  • 蒋盖,胡少鹏,左浩*
作者信息 +

Full focus weighted imaging method based on ultrasonic guided wave mode separation

  • JIANG Gai, HU Shaopeng, ZUO Hao*
Author information +
文章历史 +

摘要

针对环形阵列超声导波相控阵全聚焦成像法伪像多、成像质量较低的问题,提出一种适用于薄壁结构损伤识别定位的全聚焦加权成像方法。首先根据Lamb波散射模型和频散先验曲线构造单模态频散字典,构建多模态响应信号与频散字典间的稀疏模型并求解,使得多模态响应信号在单模态字典下稀疏表示,实现超声导波模态分离;其次引入虚拟时间反转技术消除全矩阵数据中单模态响应信号的频散,矫正相位偏差,补偿幅值衰减;最后将损伤成像区域划分成若干网格,并假设每个网格点均有潜在损伤的可能,以此构造潜在损伤原子库,构建单模态响应信号与潜在损伤原子间的稀疏模型并求解得到权重因子,实现损伤加权全聚焦成像。试验结果表明,所提的全聚焦加权成像方法能够实现铝板结构单损伤、多损伤高精度定位和高分辨率成像,最大误差为63 mm。

Abstract

Here, aiming at problems of many artifacts and lower imaging quality of annular array ultrasonic guided wave phased array full focus imaging method, a full focus weighted imaging method suitable for identifying and locating damage in thin-walled structures was proposed. Firstly, a single-modal frequency dispersion dictionary was constructed according to Lamb wave scattering model and frequency dispersion prior curve, and a sparse model between multi-modal response signal and the frequency dispersion dictionary was constructed and solved to make a multimodal response signal be sparsely represented under the single-modal dictionary, and realize ultrasonic guided wave mode separation. Secondly, the virtual time reversal technology was introduced to eliminate frequency dispersion of single-modal response signal in full matrix data, correct phase deviation, and compensate for amplitude attenuation. Finally, damage imaging area was divided into several grids, and it was assumed that each grid point has the possibility of potential damage. Based on this assumption, a potential damage atom library was constructed, and a sparse model between single-modal response signal and potential damage atoms was constructed and solved to obtain weight factors, and realize damage weighted full focus imaging. The experimental results showed that the proposed full focus weighted imaging method can realize high-precision positioning and high-resolution imaging of single and multi-damage of aluminum plate structures, the maximum error is 63 mm.

关键词

超声导波 / 模态分离 / 频散补偿 / 损伤识别 / 加权成像

Key words

ultrasonic guided wave / mode separation / frequency dispersion compensation / damage identification / weighted imaging

引用本文

导出引用
蒋盖, 胡少鹏, 左浩. 基于超声导波模态分离的全聚焦加权成像方法[J]. 振动与冲击, 2025, 44(7): 8-15
JIANG Gai, HU Shaopeng, ZUO Hao. Full focus weighted imaging method based on ultrasonic guided wave mode separation[J]. Journal of Vibration and Shock, 2025, 44(7): 8-15

参考文献

[1]何存富,郑明方,吕炎,等. 超声导波检测技术的发展、应用与挑战[J]. 仪器仪表学报, 2016, 37(8): 1713-1735.
HE Cunfu, ZHENG Mingfang, L Yan, et al. Development, applications and challenges in ultrasonic guided waves testing technology[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1713-1735.
[2]段佳桐,隋福成,刘汉海,等. 弯曲载荷下薄壁结构疲劳裂纹扩展性能[J]. 航空学报, 2021, 42(5): 280-288.
DUAN Jiatong, SUI Fucheng, LIU Hanhai, et al. Fatigue crack growth performance of thin-walled structure under bending load[J]. Acta Aeronautica ET Astronautica Sinica, 2021, 42(5): 280-288.
[3]袁阿琳,赖迎庆,石剑,等. 铝薄板裂纹电磁超声导波B扫描检测实验研究[J]. 声学技术, 2022, 41(2): 211-219.
YUAN Alin, LAI Yingqing, SHI Jian, et al. Experimental research on B-scan detection of electromagnetic ultrasonic guided wave for aluminium sheet cracks[J]. Technical Acoustics, 2022, 41(2): 211-219.
[4]王道累,肖佳威,刘易腾,等. 风电机组叶片损伤检测技术研究与进展[J]. 中国电机工程学报, 2023, 43(12): 4614-4631.
WANG Daolei, XIAO Jiawei, LIU Yiteng, et al. Research and development of wind turbine blade damage detection technology[J]. Proceedings of the CSEE, 2023, 43(12): 4614-4631.
[5]徐冠基,许才彬,杨志勃,等. 碳纤维层合板Lamb波损伤检测的加权块稀疏成像法[J]. 西安交通大学学报, 2019, 53(6): 176-182.
XU Guanji, XU Caibin, YANG Zhibo, et al. Weighted group-sparse imaging method for lamb wave damage detection of CFRP laminates[J]. Journal of Xi’an Jiaotong University, 2019, 53(6): 176-182.
[6]左浩,邢娇,康敬东,等. 薄壁结构损伤识别的超声导波多模态融合成像方法[J]. 西安交通大学学报, 2023, 57(4): 88-96.
ZUO Hao, XING Jiao, KANG Jingdong, et al. Guided wave multi-mode fusion imaging method for damage detection of thin-walled structures[J]. Journal of Xi’an Jiaotong University, 2023, 57(4): 88-96.
[7]刘增华,徐营赞,何存富,等. 板状结构中基于Lamb波单模态的缺陷成像试验研究[J]. 工程力学, 2014, 31(4): 232-238.
LIU Zenghua, XU Yingzan, HE Cunfu, et al. Experimental study on defect imaging based on single lamb wave mode in plate-like structures[J]. Engineering Mechanics, 2014, 31(4): 232-238.
[8]孙佳颖,鱼则行, 徐超. T型加强筋条对弹性导波在薄板中传播行为的影响[J]. 振动与冲击, 2022, 41(13): 67-74.
SUN Jiaying, YU Zexing, XU Chao. Effects of T-stiffener on propagation behavior of elastic guided wave in thin wall panels[J]. Journal of Vibration and Shock, 2022, 41(13): 67-74.
[9]MITRA M, GOPALAKRISHNAN S. Gopalakrishnan. Guided wave based structural health monitoring: a review[J]. Smart Materials and Structures, 2016, 25(5): 053001.
[10]WANG S L, WU W R, SHEN Y P, et al. Influence of the PZT sensor array configuration on lamb wave tomography imaging with the RAPID algorithm for hole and crack detection[J]. Sensors, 2020, 20(3): 860.
[11]YUAN Q, KATO B, FAN K Q, et al. Phased array guided wave propagation in curved plates[J]. Mechanical Systems and Signal Processing, 2023, 185: 109821.
[12]许才彬,左浩, 陈一馨. 超声导波相控阵脉冲压缩全聚焦缺陷成像方法[J]. 振动与冲击, 2024, 43(11): 50-57.
XU Caibin, ZUO Hao, CHEN Yixin. Ultrasonic guided wave phased array pulse compression full focus defect imaging method[J]. Journal of Vibration and Shock, 2024, 43(11): 50-57.
[13]杨斌,胡超杰,轩福贞,等. 基于超声导波的压力容器健康监测Ⅰ:波传导行为及损伤定位[J]. 机械工程学报, 2020, 56(4): 1-10.
YANG Bin, HU Chaojie, XUAN Fuzhen, et al. Structural health monitoring of pressure vessel based on guided wave technology. Part I: wave propagating and damage localization[J]. Journal of Mechanical Engineering, 2020, 56(4): 1-10.
[14]HOLMES C, DRINKWATER B W, WILCOX P D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation[J]. NDT&E International, 2005, 38(8): 701-711.
[15]XU B L, GIURGIUTIU V. Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Nondestructive Evaluation, 2007, 26(2/3/4): 123-134.
[16]焦敬品,崔效印,李海平,等. 基于稀疏表示的兰姆波模态分离方法研究[J]. 测控技术, 2022, 
41(2): 82-89.
JIAO Jingpin, CUI Xiaoyin, LI Haipin, et al. Method of lamb wave mode separation based on sparse representation[J]. Measurement & Control Technology, 2022, 41(2): 82-89.
[17]DIOGO A R, MOREIRA B, GOUVEIA C A J, et al. A review of signal processing techniques for ultrasonic guided wave testing[J]. Metals, 2022, 12(6): 936.
[18]ORTA A H, KERSEMANS M, VAN DEN ABEELE K. A comparative study for calculating dispersion curves in viscoelastic multi-layered plates[J]. Composite Structures, 2022, 294: 115779.
[19]MU W L, GAO Y Q, LIU G J. Ultrasound defect localization in shell structures with lamb waves using spare sensor array and orthogonal matching pursuit decomposition[J]. Sensors, 2021, 21(23): 8127.
[20]KUDELA P, RADZIENSKI M, OSTACHOWICZ W, et al. Structural Health Monitoring system based on a concept of Lamb wave focusing by the piezoelectric array[J]. Mechanical Systems and Signal Processing, 2018, 108: 21-32.
[21]XU C B, WANG J S, YIN S X, et al. A focusing MUSIC algorithm for baseline-free Lamb wave damage localization[J]. Mechanical Systems and Signal Processing, 2022, 164: 108242.
[22]VAN DEN BERG E, FRIEDLANDER M P. Probing the Pareto frontier for basis pursuit solutions[J]. SIAM Journal on Scientific Computing (USA), 2009, 31(2): 890-912.
[23]XU C, ZUO H, DENG M. Dispersive MUSIC algorithm for Lamb wave phased array[J]. Smart Materials and Structures, 2022, 31(2): 025033.

PDF(2568 KB)

227

Accesses

0

Citation

Detail

段落导航
相关文章

/