汽车磁流变油气弹簧工作原理及试验研究

董小闵1, 李坪洋1, 费振洋1, 申皓月1, 潘忠文2, 郭海全3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (8) : 30-41.

PDF(2223 KB)
PDF(2223 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (8) : 30-41.
交通运输科学

汽车磁流变油气弹簧工作原理及试验研究

  • 董小闵*1,李坪洋1,费振洋1,申皓月1,潘忠文2,郭海全3
作者信息 +

Mechanical principle and experimental analysis of vehicle magnetorheological hydro-pneumatic spring

  • DONG Xiaomin*1,LI Pingyang1,FEI Zhenyang1,SHEN Haoyue1,PAN Zhongwen2,GUO Haiquan3
Author information +
文章历史 +

摘要

针对目前汽车油气弹簧阻尼特性无法根据路况及行驶工况自适应调整,且难以取得更好的安全性和舒适性的难题,提出了一种汽车磁流变 (magnetorheological,MR)油气弹簧设计理论及方法。基于磁流变机理及汽车悬架阻尼减振理论,提出了一种双向阻尼力可控的新型汽车磁流变油气弹簧结构方案,分析了磁流变油气弹簧工作原理;考虑气体流体可压缩性、磁流变液挤压强化效应和局部损失等因素,推导了磁流变油气弹簧的输出阻尼力及弹性力计算公式;定性定量分析了磁流变阀芯长度、间隙和气体压强对磁流变油气弹簧输出力学性能的影响;样机测试测试结果表明,推导的理论力学模型能够准确地描述不同激励下磁流变油气弹簧的力学特性,磁流变油气弹簧的输出力随着激励幅值、频率、电流的增大而增大,研究结果为汽车磁流变油气弹簧的应用提供了理论和硬件基础。

Abstract

Aiming at the problem that the damping characteristics of vehicle hydro-pneumatic spring cannot be adaptively adjusted according to road and driving conditions, and it is difficult to achieve sufficient safety and comfortBased on the insufficient adaptive damping capability with the various road and running conditions for hydro-pneumatic spring in vehicles, which cannot obtain satisfactory safety and serviceability,, a design theory of semi-active magnetorheological (MR) hydro-pneumatic spring is was proposed. Based on the MR mechanism and vibration-damping theory of vehicle suspension, a novel MR hydro-pneumatic spring with two-way damping force controllability for vehicles has beenwas designed. Mechanical principle of this MR prototype is was discussed with MR valve. Considering the compressibility of liquid and gas, squeezing strengthening effect of MR fluid and local loss, the theoretical models of output damping force and elastic force are were derived. The effects of Mechanical mechanical variations ,with piston length, gap width and gas pressure, with on output mechanical properties were have been qualitatively and quantitatively analyzed based on the derived model. Comparing with the measured results of the experimental prototype, the proposed theoretical models can precisely describe the mechanical performance under various excitations. The output force increases with the increasing increase the of excitation amplitude, frequency and the applied currents. These findings provide the theory and hardware base for optimization design of MR hydro-pneumatic spring for vehicles.

关键词

磁流变油气弹簧 / 双向阻尼力可控 / 挤压强化效应 / 输出力学性能

Key words

Magnetorheological hydro-pneumatic spring / Two-way damping force controllability / Squeezing strengthening effect / Output mechanical performance

引用本文

导出引用
董小闵1, 李坪洋1, 费振洋1, 申皓月1, 潘忠文2, 郭海全3. 汽车磁流变油气弹簧工作原理及试验研究[J]. 振动与冲击, 2025, 44(8): 30-41
DONG Xiaomin1, LI Pingyang1, FEI Zhenyang1, SHEN Haoyue1, PAN Zhongwen2, GUO Haiquan3. Mechanical principle and experimental analysis of vehicle magnetorheological hydro-pneumatic spring[J]. Journal of Vibration and Shock, 2025, 44(8): 30-41

参考文献

[1] 赵雷雷,周长城,于曰伟. 特种车辆悬架减振器变厚度阀片变形计算及应用研究[J]. 机械工程学报,2017,53(6):116-122.
ZHAO Leilei,ZHOU Changcheng,YU Yuewei. Deformation Computation of Variable-thickness Throttle Slice of Shock Absorber for Special Vehicle Suspension and Application[J]. Journal of Mechanical Engineering,2017,53(6):116-122.
[2] 杜志朋,林恕峰,董明明. 重型越野车辆油气弹簧设计与验证[J]. 液压与气动,2021,45(10):69-75.
DU Zhipeng,LIN Shufeng,DONG Mingming. Design and Rig Test of Hydro-pneumatic Spring for Heavy Off-road Vehicles[J]. Chinese Hydraulics & Pneumatics,2021,45(10):69-75.
[3] 孙建民,刘详,张帅,等. 重载工程车辆油气悬架系统控制技术研究现状分析[J]. 中国工程机械学报,2021,19(6):482-486.
SUN Jianmin,LIU Xiang,ZHANG Shuai,et al. Control technology analysis of hydro pneumatic suspension system for heavy duty engineering vehicle[J]. Chinese Journal of Construction Machinery,2021,19(6):482-486.
[4] ARCONADA V,BARRUETSBENA J. Development and validation of a simplified nonlinear dynamic model of a passive twin-tube hydraulic shock absorber[J]. Journal of Vibration and Control,2021,27(15-16):1724-1735.
[5] 甄龙信,张文明. 单气室油气悬架的仿真与试验研究[J]. 机械工程学报,2009,45(5):290-294.
ZHEN Longxin,ZHANG Wenming. Research on Simulation and Experiment of Hydro-pneumatic Suspension with Single Gas Cell[J]. Journal of Mechanical Engineering,2009,45(5):290-294.
[6] 黄夏旭,杨珏,申焱华,等. 基于气体溶解与油液可压缩性的油气悬架性能研究[J]. 农业机械学报,2013,44(6):14-18.
Huang Xiaxu,Yang Jue,Shen Yanhua,et al. Characteristics Analysis of Hydro Pneumatic Suspension Based on Gas Dissolution and Oil Compressibility[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(6):14-18.
[7] 庄德军,柳江,喻凡,等. 汽车油气弹簧非线性数学模型及特性[J]. 上海交通大学学报,2005,39(9):1441-1444.
ZHUANG Dejun,LIU Jiang,YU Fan, et al. The Nonlinear Mathematical Model and Characteristics of Hydro-Pneumatic Spring[J]. Journal of Shanghai Jiaotong University,2005,39(9):1441-1444.
[8] 张军伟,闫惠东,程斐,等. 交叉互连油气弹簧抗侧倾特性研究及试验[J]. 汽车工程学报,2022,12(1):75-82.
ZHANG Junwei,YAN Huidong,CHENG Fei,et al. Research and Testing on Anti-Roll Characteristic of Interconnected Hydro-Pneumatic Suspension[J]. Chinese Journal of Automotive Engineering,2022,12(1):75-82.
[9] 赵敬凯,谷正气,张沙,等. 矿用自卸车油气悬架力学特性研究与优化[J]. 机械工程学报,2015,51(10):112-118.
ZHAO Jingkai,GU Zhengqi,ZHANG Sha,et al. Research and Optimization on the Mechanical Property of Mining Dump Truck’s Hydro-pneumatic Suspension[J]. Journal of Mechanical Engineering,2015,51(10):112-118.
[10] 汪少华,翟旭辉,孙晓强,等. 车辆刚度阻尼多级可调式油气悬架系统分析及控制研究[J]. 振动与冲击,2022,41(22):168-177.
WANG Shaohua,ZHAI Xuhai,SUN Xiaoqiang,et al. Analysis and control of a vehicle hydro pneumatic suspension system with multistage adjustable stiffness and damping characteristics[J]. Journal of Vibration and Shock,2022,41(22):168-177.
[11] SUN Xiaoqiang,CAI Yingfei,YUAN Chaochun,et al. Hybrid model predictive control of damping multi-mode switching damper for vehicle suspensions[J]. Journal of Vibroengineering,2017,19(4):2910-2930.
[12] Kitching K,COLE D,CEBON D. Performance of a Semi-Active Damper for Heavy Vehicles[J]. Journal of Dynamic Systems Measurements & Contorl,2000,122(3):498-506.
[13] BODNIEWICZ D,KALETA J,LEWANDOWSKI D. The fabrication and the identification of damping properties of magnetorheological composites for energy dissipation[J]. Composite Structures,2018,189:177-183.
[14] LIANG Yudai,HUANG Dongyang,ZHOU Xuefeng,et al. Efficient Electrorheological Technology for Materials, Energy, and Mechanical Engineering: From Mechanisms to Applications[J]. Engineering,2022.
[15] 朱学斌,胡文俊,高峰. 磁流变油气弹簧技术研究[J]. 汽车技术,2007,.386(11):9-12.
ZHU Xuebin,HU Wenjun,GAO Feng,et al. Study on the technology of Hydra-Pneumatic Spring Using Magneto- Rheological Fluid[J]. Automobile Technology,2007,386(11):9-12.
[16] JANG J,CHRISTIE M,SUN S,et al. Integration of an omnidirectional self-powering component to an MRE isolator towards a smart passive isolation system[J]. Mechanical Systems and Signal Processing,2020,144:106853.
[17] 何旭辉,陈政清,黄方林,等. 洞庭湖大桥斜拉索减振试验研究[J]. 振动工程学报,2002,15(4):447-450.
HE Xuhui,CHEN Zhengqing,HUANG Fanglin,et al. Test of Vibration Mitigation of a Stay Cable on the Dongting Lake Bridge[J]. Journal of Vibration Engineering,2002,15(4):447-450.
[18] NGUYEN Q,CHOI S. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range[J]. Smart Materials and Structures,2009,18(1):015013.
[19] DONG Xiaomin,LI Pingyang,YAN Maosen,et al. Characteristic analysis under small-stroke and medium-high frequency of magneto-rheological damper with pressure controlled mechanism[J]. Smart Materials and Structures,2022,31(4):045011.
[20] 白先旭,杨森. 磁流变半主动落锤冲击缓冲系统的“软着陆”控制试验与分析[J]. 机械工程学报,2021,57(1):121-127.
BAI Xianxu,YANG Sen. Experimental Test and Analysis of “Soft-landing” Control for Drop-induced Shock Systems using Magnetorheological Energy Absorber[J]. Journal of Mechanical Engineering,2021,57(1):121-127.

PDF(2223 KB)

172

Accesses

0

Citation

Detail

段落导航
相关文章

/