铁路轨道平顺性状态评估及预测研究进展

李再帏1, 刘晓舟2, 施洁1, 尹梓人2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (8) : 49-63.

PDF(1559 KB)
PDF(1559 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (8) : 49-63.
交通运输科学

铁路轨道平顺性状态评估及预测研究进展

  • 李再帏1,刘晓舟*2,施洁1,尹梓人2
作者信息 +

Recent research progress on assessment and prediction of railway track geometric condition

  • LI Zaiwei1,LIU Xiaozhou*2,SHI Jie1,YIN Ziren2
Author information +
文章历史 +

摘要

铁路轨道平顺性状态关乎列车运行的安全性和舒适性,因此对轨道不平顺特征分析、轨道质量评价及轨道平顺性发展预测的研究具有重要的现实意义。本文综述了近年来关于轨道平顺性评估及其状态预测的相关研究工作,主要围绕轨道不平顺分布特征分析、轨道服役状态评价和轨道平顺性发展预测三个方面展开,讨论了既有的各类研究的先进性与不足之处,分析了未来可进一步深化的研究方向。研究结果表明:在轨道不平顺分布特征研究方面,未来需要进一步融合动态与静态不平顺检测数据特征,同时需要加强对敏感薄弱轨道区段的跟踪研究;轨道平顺性状态评价方法方面,目前以时域幅值管理为主,频域波长管理指标还处于探索阶段,未来需进一步研究频域波长与时域幅值的关系,构建蕴含波长参数的轨道质量评价体系;在轨道平顺性发展预测研究方面,相比于有砟线路和普速铁路,无砟线路和高速铁路的研究相对较少,相关研究未充分考虑轨道结构状态性能的演化,未来需要根据实际环境与养修因素来构建满足工务生产要求的预测模型。

Abstract

The geometric condition of railway tracks is crucial for the operational safety and ride comfort of trains. Therefore, research on the analysis of track irregularities, track quality assessment, and prediction of track irregularity development is of importantsignificant practical significance. This paper reviews recent Recent research on the assessment and prediction of track geometry was reviewed in this paper, including the analysis distribution characteristics analysis of track irregularity, track serviceability assessment, and prediction of track irregularity development. The advancements and shortcomings of existing research is was discussed and future research directions of relevant topics are were analyzed. It is found that in the study of track regularity distribution, there is a need to further integrate dynamic and static track inspection data, as well as to further investigate the data feature in the sensitive and weak track sections. Regarding track quality assessment methods, time-domain methods is predominant, whilst the frequency-domain methods are still under development. Further research is needed to investigate the relationship between time- and frequency-domain indexes, and to establish a comprehensive track quality assessment scheme incorporating wavelength parameters. In terms of track irregularity development prediction, compared to ballasted tracks and conventional railways, research on ballastless tracks and high-speed railways is relatively limited, and relevant studies inadequately consider the evolution of track structural performance. Future efforts should focus on constructing predictive models that meet the requirements of maintenance work based on actual environmental and factors. 

关键词

铁路轨道 / 轨道不平顺 / 轨道质量 / 评价模型 / 养护维修

Key words

Railway track / Track irregularity / Track quality / Evaluation model / Assessment and repair

引用本文

导出引用
李再帏1, 刘晓舟2, 施洁1, 尹梓人2. 铁路轨道平顺性状态评估及预测研究进展[J]. 振动与冲击, 2025, 44(8): 49-63
LI Zaiwei1, LIU Xiaozhou2, SHI Jie1, YIN Ziren2. Recent research progress on assessment and prediction of railway track geometric condition[J]. Journal of Vibration and Shock, 2025, 44(8): 49-63

参考文献

[1] 王平, 徐井芒, 方嘉晟, 等. 高速铁路轨道结构理论研究进展[J]. 高速铁路技术, 2020, 11(02): 18-26.
WANG Ping, XU Jingmang, FANG Jiasheng, et al. Research progress on track structure theory of high-speed railway[J]. High Speed Railway Technology, 2020, 11(02): 18-26.
[2] PEINADO G A, HORRIDGE R, STEELE H, et al. Review of data analytics for condition monitoring of railway track geometry[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22737-22754.
[3] 高亮, 赵闻强, 钟阳龙, 等. 轨道工程精细-均衡分析理论初探[J]. 北京交通大学学报, 2020, 44(01): 1-11.
GAO Liang, ZHAO Wenqiang, ZHONG Yanglong, et al. Preliminary study on detailed & equilibrium analysis theory in railway projects[J]. Journal of Beijing Jiaotong University, 2020, 44(01): 1-11.
[4] BERGQUIST B, SÖDERHOLM P. Data analysis for condition-based railway infrastructure maintenance[J]. Quality and Reliability Engineering International, 2015, 31(5): 773-781.
[5] 王英杰, 楚杭, 时瑾, 等. 世界各国铁路轨道质量指数对比研究[J]. 铁道工程学报, 2022, 39 (07): 30-35.
WANG Yingjie, CHU Hang, SHI Jin, et al. Comparative research on the railway track quality index in different countries[J]. Journal of Railway Engineering Society, 2022, 39 (07): 30-35.
[6] SADEGHI J. Development of railway track geometry indexes based on statistical distribution of geometry data[J]. Journal of Transportation Engineering, 2010, 136(8): 693-700.
[7] 王有能, 李再帏, 张家维, 等. 千米级大跨度桥上线路动态与静态轨道不平顺的关系[J]. 铁道建筑, 2023.
WANG Youneng, LI Zaiwei, ZHANG Jiawei, et al. Relationships of dynamic and static track irregularity on kilometer-level long span bridge[J]. Railway Engineering, 2023.
[8] 张志川, 刘秀波, 强伟乐, 等. 普速铁路动静态轨道不平顺相关性研究[J]. 铁道建筑, 2022, 62(9): 47-51.
ZHANG Zhichuan, LIU Xiubo, QIANG Weile, et al. Research on correlation between dynamic and static track irregularities of normal speed railway[J]. Railway Engineering, 2022, 62(9): 47-51.
[9] 何庆, 汪健辉, 李晨钟, 等. 基于极值理论的轨道不平顺峰值超限管理研究[J]. 铁道学报, 2022, 44(11): 82-87.
HE Qing, WANG Jianhui, LI Chenzhong, et al. Research on management of track irregularity peak value threshold based on extreme value theory[J]. Journal of the China Railway Society, 2022, 44(11): 82-87.
[10] 何庆, 汪健辉, 李晨钟, 等. 基于分位数回归的轨道质量指数阈值合理性数据分析[J]. 铁道学报, 2023, 45(7): 99-105.
HE Qing, WANG Jianhui, LI Chenzhong, et al. Data analysis of rationality of threshold of track quality index based on quantile regression[J]. Journal of the China Railway Society, 2023, 45(7): 99-105.
[11] LIU Xiaozhou, LI Zaiwei, WU Jun, et al. Correlation analysis between rail track geometry and car body vibration based on fractal theory[J]. Fractal and Fractional, 2022, 6(12), 727. 
[12] LI Zaiwei, LIU Xiaozhou, LU Hongyao, et al. Narrowing longitudinally coupled prefabricated slab track maintenance duration with field data analysis of slab deformation under high temperature[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(9): 1099-1109.
[13] 王志鹏, 冯怀平, 杨志浩, 等. 轨道不平顺引起路基翻浆冒泥机理研究[J]. 铁道建筑, 2015, (11): 73-75.
WANG Zhipeng, FENG Huaiping, YANG Zhihao, et al. Mechanism study on subgrade mud pumping caused by track irregularity[J]. Railway Engineering, 2015, (11): 73-75.
[14] 陈宪麦, 董春敏, 魏子龙, 等. 高速铁路0.01~120 m波段轨道不平顺功率谱密度函数的构建[J]. 中南大学学报(自然科学版), 2023, 6(54): 2111-2121.
CHEN Xianmai, DONG Chunmin, WEI Zilong, et al. Development on power spectral density function of track irregularity of 0.01-120 m waveband of high-speed railway[J]. Journal of Central South University (Science and Technology), 2023, 6(54): 2111-2121.
[15] 余建, 蒋丽忠, 周旺保, 等. 横向随机地震下震致轨道几何不平顺的功率谱密度曲线研究[J]. 土木工程学报, 2022, 55(2): 61-72.
YU Jian, JIANG Lizhong, ZHOU Wangbao, et al. Study on power spectral density curve of track geometric irregularity under lateral random earthquake[J]. China Civil Engineering Journal, 2022, 55(2): 61-72.
[16] YU Jian, JIANG Lizhong, ZHOU Wangbao, et al. Distribution mode of seismic residual track irregularity for high-speed railway[J]. Journal of Central South University, 2023, 30(2): 599-612.
[17] 高建敏, 赖思成. 重载铁路轨道不平顺谱构建与分析[J]. 铁道工程学报, 2022, 39(3): 32-39.
GAO Jianmin, LAI Sicheng. Construction and analysis of track irregularity spectrum of heavy haul railway[J]. Journal of Railway Engineering Society, 2022, 39(3): 32-39.
[18] 郝晓莉, 杨建, 杨飞, 等. 重载铁路轨道不平顺谱的分析和表征[J]. 铁道学报, 2023, 45(7): 115-125.
HAO Xiaoli, YANG Jian, YANG Fei, et al. Analysis and expression of track irregularity spectrum of heavy-haul railway[J]. Journal of the China Railway Society, 2023, 45(7): 115-125.
[19] 金锋, 肖宏, 崔旭浩. 基于Burg法的城市轨道交通快速线路轨道不平顺谱研究[J]. 铁道学报, 2020, 42(4): 99-106.
JIN Feng, XIAO Hong, CUI Xuhao. Study on track irregularity spectrum of fast urban rail transit line based on Burg method[J]. Journal of the China Railway Society, 2020, 42(4): 99-106.
[20] 杨飞, 孙宪夫, 尤明熙, 等. 考虑周期性不平顺的高速铁路各型无砟轨道谱拟合与反演方法[J]. 铁道学报, 2023, 45(9): 114-122.
YANG Fei, SUN Xianfu, YOU Mingxi, et al. Track spectrum fitting and inversion method of various types of high-speed railway ballastless track considering periodic irregularity[J]. Journal of the China Railway Society, 2023, 45(9): 114-122.
[21] 曾志平, 刘付山, 王卫东, 等. 考虑轨道谱概率分布的不平顺样本模拟方法[J]. 铁道工程学报, 2020, 37(9): 7-11, 17.
ZENG Zhiping, LIU Fushan, WANG Weidong, et al. Irregularity samples simulation method considering the probability distribution of track spectrum[J]. Journal of Railway Engineering Society, 2020, 37(9): 7-11, 17.
[22] LI Zaiwei, ZHOU Yunlai, LIU Xiaozhou, et al. Service reliability assessment of ballastless track in high speed railway via improved response surface method[J]. Reliability Engineering & System Safety, 2023, 234: 109180.
[23] 赵文博, 杨飞, 谭社会, 等. 高速铁路轨道周期性不平顺特征表征与识别[J]. 中国铁道科学, 2023, 44(3): 43-52.
ZHAO Wenbo, YANG Fei, TAN Shehui, et al. Feature representation and identification of periodic irregularity of high-speed railway track[J]. China Railway Science, 2023, 44(3): 43-52.
[24] 雷拓, 郑毅飞, 闫玉康, 等. 基于移动单元法的高速铁路轨道不平顺特性研究[J]. 铁道标准设计, 2023, 67(1): 88-93, 104.
LEI Tuo, ZHENG Yifei, YAN Yukang, et al. Characteristics analysis on dynamic irregularity of high speed railway based on moving element method[J]. Railway Standard Design, 2023, 67(1): 88-93, 104.
[25] 杨吉忠, 谢毅, 庞玲, 等. 400 km/h高速铁路轨道几何不平顺敏感波长分析[J]. 高速铁路技术, 2021, 12(02): 50-55.
YANG Jizhong, XIE Yi, PANG Ling, et al. Sensitive wavelength analysis on track geometric irregularities of 400 km/h high-speed railway[J]. High Speed Railway Technology, 2021, 12(02): 50-55.
[26] 李再帏, 练松良, 周俊磊. 基于改进EMD方法的轨道不平顺时频分析[J]. 同济大学学报(自然科学版), 2012, 40(5): 702-706, 728.
LI Zaiwei, LIAN Songliang, ZHOU Junlei. Time-frequency analysis of track irregularity based on improved empirical mode decomposition method[J]. Journal of Tongji University (Natural Science), 2012, 40(5): 702-706, 728.
[27] YANG Youtao, LIU Guoxiang, WANG Xiaowen. Time–frequency characteristic analysis method for track geometry irregularities based on multivariate empirical mode decomposition and Hilbert spectral analysis[J]. Vehicle System Dynamics, 2020: 1-24.
[28] 常文浩, 蔡小培, 秦航远, 等. 基于CEEMDAN-Hilbert法的道岔区轨道不平顺时频特征分析[J]. 铁道学报, 2022, 44(5): 110-118.
CHANG Wenhao, CAI Xiaopei, QIN Hangyuan, et al. Analysis of time-frequency characteristics of track irregularity in turnout area based on CEEMDAN-Hilbert method[J]. Journal of the China Railway Society, 2022, 44(5): 110-118.
[29] SOLEIMANMEIGOUNI I, AHMADI A, KUMAR U. Track geometry degradation and maintenance modelling: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(1): 73-102.
[30] MAGDY E, ZHANG Yujiang. Objective track quality indices[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1863(1): 81-87.
[31] STANDARD B. BS EN 13848-5:2008 Railway applications-Track-Track geometry quality[S]. 2008.
[32] LASISI A, ATTOH-OKINE N. Principal components analysis and track quality index: A machine learning approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 230-248.
[33] PARK B, CHOI Y, HWANG S H. Ballasted track status evaluation based on apparent track stiffness index[J]. Applied Sciences, 2020, 10(14): 4729.
[34] MOVAGHAR M, MOHAMMADZADEH S. Intelligent index for railway track quality evaluation based on Bayesian approaches[J]. Structure and Infrastructure Engineering, 2020, 16(7): 968-986.
[35] 李海锋,吴纪才,许玉德.铁路轨道几何状态评价方法比较[J].同济大学学报:自然科学版,2005(6):772-776.
LI Haifeng, WU Jicai, XU Yude. Comparison of railway track geometry status evaluation methods [J]. Journal of Tongji University: Natural Science, 2005(6) :772 -776.
[36] MADEJSKI J., GRABOZYK J. 2000. Continuous geometry measurement for diagnostics of tracks and switches, Silesian Univ. of Technology, Gliwice, Poland, 8–30.
[37] SETIAWAN D M, ROSYIDI S A P. Track quality index as track quality assessment indicator[C]// The 19th International Symposium of FSTPTAt. Yogyakarta: Islamic University of Indonesia, 2016.
[38] 李海锋, 许玉德, 王建西. 轨道几何状态均匀性指数及其应用[J]. 同济大学学报(自然科学版), 2009, 37(04): 495-499.
LI Haifeng, XU Yude, WANG Jianxi. Track geometry equality index and its application[J]. Journal of Tongji University (Natural Science), 2009, 37(04): 495-499.
[39] SADEGHI J, ASKARINEJAD H. Quality condition assessment and determination of effective maintenance activities in railway slab tracks[J]. International Journal of Pavement Engineering, 2012, 13(1): 1-10.
[40] FALAMARZI A, MORIDPOUR S, NAZEM M. A time-based track quality index: Melbourne tram case study[J]. International Journal of Rail Transportation, 2021, 9(1): 23-38.
[41] 杨翠平, 王平. 基于多时域特征量的轨道不平顺状态综合评估[J]. 铁道标准设计, 2020, 64(05): 57-62.
YANG Cuiping, WANG Ping. Comprehensive evaluation of track irregularity based on multiple time-domain feature quantities[J]. Railway Standard Design, 2020, 64(05): 57-62.
[42] HYSLIP J P. Fractal analysis of track geometry data[J]. Transportation Research Record, 2002, 1(1785): 50-57.
[43] LANDGRAF M, HANSMANN F. Fractal analysis as an innovative approach for evaluating the condition of railway tracks[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 233(6): 596-605.
[44] VIDOVIC I, LANDGRAF M. Fiber optic sensing as innovative tool for evaluating railway track condition[C]. International Conference on Smart Infrastructure and Construction 2019 (ICSIC): Driving Data-Informed Decision-Making, 2019.
[45] TACIROĞLU M V, KARAŞAHIN M, TıĞDEMIR M, et al. Fractal analysis of high speed rail geometry data: A case study of Ankara-Eskişehir high speed rail[J]. Measurement, 2020, 165: 108120.
[46] 李再帏, 练松良. 武广高速铁路轨道不平顺谱特征分析[J]. 郑州大学学报(工学版), 2013, 34(5): 52-55.
LI Zaiwei, LIAN Songliang. Characteristic analysis of track irregularity spectrum of Wuhan-Guangzhou high-speed railway[J]. Journal of Zhengzhou University (Engineering Science), 2013, 34(5): 52-55.
[47] 康熊, 刘秀波, 李红艳, 等. 高速铁路无砟轨道不平顺谱[J]. 中国科学:技术科学, 2014, 44(07): 687-696.
KANG Xiong, LIU Xiubo, LI Hongyan, et al. PSD of ballastless track irregularities of high-speed railway[J]. Scientia Sinica (Technologica), 2014, 44(07): 687-696.
[48] 田国英, 高建敏, 赵春发. 铁路轨道不平顺谱研究进展[J]. 铁道工程学报, 2016, 33(09): 35-40.
TIAN Guoying, GAO Jianmin, ZHAO Chunfa. Progress in the research on the railway track irregularity power spectral density[J]. Journal of Railway Engineering Society, 2016, 33(09): 35-40.
[49] 房建, 雷晓燕, 练松良. 合-武客运专线轨道不平顺谱特性实测分析[J]. 铁道学报, 2015, 37(07): 79-85.
FANG Jian, LEI Xiaoyan, LIAN Songliang. Analysis on characteristics of track irregularity spectrum of Hefei-Wuhan passenger dedicated line[J]. Journal of the China Railway Society, 2015, 37(07): 79-85.
[50] 陈宪麦, 向尚, 徐磊, 等. 武广客运专线通用轨道谱及其反演简化算法[J]. 铁道科学与工程学报, 2016, 13(02): 226-232.
CHEN Xianmai, XIANG Shang, XU Lei, et al. Study on general track spectrum and the simplified inverse algorithm of Wuhan-Guangzhou passenger special line[J]. Journal of Railway Science and Engineering, 2016, 13(02): 226-232.
[51] 陈宪麦, 徐磊, 王卫东, 等. 青藏铁路轨道不平顺谱研究[J]. 铁道科学与工程学报, 2016, 13(9): 1686-1695.
CHEN Xianmai, XU Lei, WANG Weidong, et al. Research on track irregularity power spectrum density of Qinghai-Tibet railway[J]. Journal of Railway Science and Engineering, 2016, 13(9): 1686-1695.
[52] 徐磊, 翟婉明, 陈宪麦, 等. 青藏铁路轨道不平顺界限谱研究[J]. 铁道学报, 2018, 40(05): 103-108.
XU Lei, ZHAI Wanming, CHEN Xianmai, et al. Research on track irregularity boundary PSDs of Qinghai-Tibet railway[J]. Journal of the China Railway Society, 2018, 40(05): 103-108.
[53] 高望翰, 郝晓莉, 张煜, 等. 基于多项式拟合的高速铁路高低轨道不平顺功率谱分析[J]. 北京交通大学学报, 2020, 44(02): 27-35.
GAO Wanghan, HAO Xiaoli, ZHANG Yu, et al. Analysis of high-speed rail track longitudinal irregularity power spectrum based on polynomial fitting[J]. Journal of Beijing Jiaotong University, 2020, 44(02): 27-35.
[54] 杨飞, 刘丙强, 谭社会, 等. 高速铁路轨道静态几何不平顺弦测评价标准体系研究[J]. 铁道建筑, 2021, 61 (06): 107-111+120.
    YANG Fei, LIU Bingqiang, TAN Shehui, et al. Research on evaluation standard system of chord measurement for track static geometric irregularity of high speed railway[J]. Railway Engineering, 2021, 61 (06): 107-111+120.
[55] 郑晓龙, 徐昕宇, 陈克坚, 等. 基于弦测法的上承式拱桥长波不平顺限值研究[J]. 铁道工程学报, 2019, 36 (10): 54-58+101.
  ZHENG Xiaolong, XU Xinyu, CHEN Kejian, et al. Research on the limit of long-wave irregularities for deck arch bridge using chord measurement method[J]. Journal of Railway Engineering Society, 2019, 36 (10): 54-58+101.
[56] 田新宇, 高亮, 杨飞, 等. 基于动态短弦的无砟轨道板周期性不平顺管理标准[J]. 中国铁道科学, 2020, 41 (06): 30-38.
TIAN Xinyu, GAO Liang, YANG Fei, et al. Management standard for cyclic irregularity of ballastless track slab based on dynamic short chord[J]. China Railway Science, 2020, 41 (06): 30-38.
[57] 贾东荣. 长联大跨部分斜拉桥上无砟轨道平顺性分析[J]. 铁道工程学报, 2023, 40 (03): 20-26.
JIA Dongrong. Analysis of smoothness of ballastless track on long-span partial cable-stayed bridge[J]. Journal of Railway Engineering Society, 2023, 40 (03): 20-26.
[58] 晋智斌, 陆军, 金秋, 等. 大跨度铁路桥梁变形弦测法评价的频域理论[J]. 铁道标准设计, 2023, 67(2): 95-102.
JIN Zhibin, LU Jun, JIN Qiu, et al. Frequency domain theory of chord measurement to evaluate the deformation of long-span railway bridges[J]. Railway Standard Design, 2023, 67(2): 95-102.
[59] 杨静静, 高芒芒, 赵文博, 等. 大跨度铁路桥梁变形控制标准研究[J]. 铁道学报, 2023, 45 (03): 137-143.
  YANG Jingjing, GAO Mangmang, ZHAO Wenbo, et al. Research on deformation control standard of long-span railway bridge[J]. Journal of the China Railway Society, 2023, 45 (03): 137-143.
[60] 李国龙, 孙宪夫, 高彦嵩, 等. 基于实车试验的大跨度桥梁轨道静态长波高低不平顺验收标准验证[J]. 铁道学报, 2024, 46 (01): 120-128.
  LI Guolong, SUN Xianfu, GAO Yansong, et al. Verification on acceptance standard for track static long-wave longitudinal level irregularity on long-span bridge based on real train test[J]. Journal of the China Railway Society, 2024, 46 (01): 120-128.
[61] 杨飞, 孙宪夫, 谭社会, 等. 动静态轨道不平顺评价差异及动态弦测法特性[J]. 西南交通大学学报, 2022, 57(6): 1239-1249.
YANG Fei, SUN Xianfu, TAN Shehui, et al. Evaluation difference of dynamic and static track irregularity and characteristics of dynamic chord measurement method[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1239-1249.
[62] 高雄杰, 于龙, 陈唐龙. 基于中点弦测法的中低速磁浮轨道不平顺检测[J]. 铁道学报, 2020, 42 (08): 116-122.
  GAO Xiongjie, YU Long, CHEN Tanglong. Detection of medium and low speed maglev track irregularity based on MCO[J]. Journal of the China Railway Society, 2020, 42 (08): 116-122.
[63] 李国龙, 高芒芒, 杨飞, 等. 400 km/h高速铁路大跨度桥梁轨道静态长波不平顺验收标准研究[J]. 铁道科学与工程学报, 2023, 20 (05): 1902-1916. 
LI Guolong, GAO Mangmang, YANG Fei, et al. Acceptance standard for track static geometric long-wave irregularity of long-span railway bridge under 400 km/h[J]. Journal of Railway Science and Engineering, 2023, 20 (05): 1902-1916. 
[64] ZHAI Wanming, HAN Zhaoling, CHEN Zhaowei, et al. Train-track-bridge dynamic interaction: a state-of-the-art review[J]. Vehicle system dynamics, 2019, 57(7): 984-1027.
[65] 李阳腾龙, 岑敏仪, 马国治. 高速铁路轨道中长波不平顺检测模型研究[J]. 铁道学报, 2017,39(2): 112-118.
LI Yangtenglong, CEN Minyi, MA Guozhi. Study on a novel inspection model of middle and long wave irregularities of track in high-speed railways[J]. Journal of the China Railway Society, 2017, 39(2): 112-118.
[66] 高建敏, 翟婉明, 王开云. 高速行车条件下轨道几何不平顺敏感波长研究[J]. 铁道学报, 2012, 34(07): 83-88.
GAO Jianmin, ZHAI Wanming, WANG Kaiyun. Study on sensitive wavelengths of track irregularities in high-speed operation[J]. Journal of the China Railway Society, 2012, 34(07): 83-88.
[67] 徐金辉, 王平, 汪力, 等. 轨道高低不平顺敏感波长的分布特征及其影响因素的研究[J]. 铁道学报, 2015, 37(07): 72-78.
XU Jinhui, WANG Ping, WANG Li, et al. Research on the distribution characteristics and influence factors of sensitive wavelength of track vertical profile irregularity[J]. Journal of the China Railway Society, 2015, 37(07): 72-78.
[68] 田新宇, 高亮, 杨飞, 等. 无砟轨道长波高低不平顺管理标准的研究[J]. 铁道工程学报, 2018, 35(03): 26-30.
TIAN Xinyu, GAO Liang, YANG Fei, et al. Research on the long-wave longitudinal level irregularity standards of ballastless track[J]. Journal of Railway Engineering Society, 2018, 35(03): 26-30.
[69] 李东昇, 杨飞, 马慧君. 高铁常用跨度简支梁桥上轨道周期性不平顺影响分析[J]. 中国铁道科学, 2020, 41(03): 59-67.
LI Dongsheng, YANG Fei, MA Huijun. Effect of periodic track irregularities on simply supported beam bridge with common span for high-speed railway [J]. China Railway Science, 2020, 41(03): 59-67.
[70] HAIGERMOSER A, EICKHOFF B, THOMAS D, et al. Describing and assessing track geometry quality[J]. Vehicle System Dynamics, 2014, 52(S1): 189-206.
[71] 陈嵘, 李帅, 王源, 等. 基于轨道局部波动的高速铁路轨道平顺状态评估方法[J]. 铁道学报, 2017, 39(02): 105-111.
CHEN Rong, LI Shuai, WANG Yuan, et al. Evaluation method of rail regularity state based on track local fluctuation in high-speed railway[J]. Journal of the China Railway Society, 2017, 39(02): 105-111.
[72] 肖剑. 基于概率置信度的高速铁路轨道平顺性评估与可视化技术[J]. 铁道建筑, 2018, 58(04): 126-129.
XIAO Jian. Evaluation and visualization technique of track regularity of high speed railway based on probability confidence[J]. Railway Engineering, 2018, 58(04): 126-129.
[73] 杨翠平, 从建力, 王源, 等. 基于带通滤波的轨道不平顺敏感波长计权评价方法[J]. 振动与冲击, 2019, 38(19): 1-6.
YANG Cuiping, CONG Jianli, WANG Yuan, et al. Weighted assessment method for sensitive wavelength of track irregularity based on band pass filtering[J]. Journal of Vibration and Shock, 2019, 38(19): 1-6.
[74] 牛留斌, 刘金朝, 曲建军, 等. 基于状态空间法的轨道不平顺与车体横向加速度关联模型[J]. 铁道学报, 2020, 42(08): 123-129.
NIU Liubin, LIU Jinzhao, QU Jianjun, et al. Study of relation between track irregularity and lateral acceleration of vehicle based on state-space model[J]. Journal of the China Railway Society, 2020, 42(08): 123-129.
[75] 王卫东, 刘金朝, 梁志明. 综合评价车辆/轨道系统动态特性的广义能量法[J]. 中国铁道科学, 2009, 30(05): 22-27.
WANG Weidong, LIU Jinzhao, LIANG Zhiming. Generalized energy index for comprehensively evaluating the dynamic characteristics of vehicle/track system[J]. China Railway Science, 2009, 30(05): 22-27.
[76] 李再帏, 练松良. 基于本征模函数的轨道质量评价方法[J]. 同济大学学报(自然科学版), 2013, 41(02): 213-217.
LI Zaiwei, LIAN Songliang. Track quality assessment method based on intrinsic mode function[J]. Journal of Tongji University (Natural Science), 2013, 41(02): 213-217.
[77] 杨友涛, 刘国祥, 刘成龙, 等. 高速铁路轨道不平顺参数多尺度相关性分析[J]. 吉林大学学报(工学版), 2019, 49(02): 416-425.
YANG Youtao, LIU Guoxiang, LIU Chenglong, et al. Multi-scale correlation analysis of track irregularities of high speed railway[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(02): 416-425.
[78] LI Chenzhong, WANG Ping, GAO Tianci, et al. Spatial–Temporal model to identify the deformation of underlying high-speed railway infrastructure[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(8): 4020084.
[79] 徐磊, 高建敏, 翟婉明, 等. 铁路轨道不平顺波长及病害波形的定位方法[J]. 中南大学学报(自然科学版), 2017, 48(11): 3060-3068.
XU Lei, GAO Jianmin, ZHAI Wanming, et al. Localization methods for track irregularity wavelengths and track diseases[J]. Journal of Central South University (Science and Technology), 2017, 48(11): 3060-3068.
[80] 徐磊, 翟婉明. 铁路轨道不平顺的时-频能量联合分析方法[J]. 铁道学报, 2017, 39(04): 9-16.
XU Lei, ZHAI Wanming. Time-frequency energy joint analysis method for railway track irregularity[J]. Journal of the China Railway Society, 2017, 39(04): 9-16.
[81] 魏子龙, 杨飞, 牛留斌, 等. 基于车体垂向平稳性的轨道高低不平顺标准差优化分级研究[J]. 铁道建筑, 2020, 60(07): 107-110.
WEI Zilong, YANG Fei, NIU Liubin, et al. Optimization and classification of standard deviation of track vertical profile irregularity based on vertical stability of car[J]. Railway Engineering, 2020, 60(07): 107-110.
[82] 邱荣华, 詹璐, 赵扬, 等. 基于车体振动加速度的北京地铁轨道状态管理研究[J]. 都市快轨交通, 2020, 33(04): 28-31.
QIU Ronghua, ZHAN Lu, ZHAO Yang, et al. Track state management of Beijing's subway based on vehicle vibration acceleration[J]. Urban Rapid Rail Transit, 2020, 33(04): 28-31.
[83] SALVADOR P, NARANJO V, INSA R, et al. Axlebox accelerations: their acquisition and time–frequency characterisation for railway track monitoring purposes[J]. Measurement, 2016, 82: 301-312.
[84] CHELLASWAMY C, MUTHAMMAL R, GEETHA T S. A new methodology for optimal rail track condition measurement using acceleration signals[J]. Measurement Science & Technology, 2018, 29(7): 75901.
[85] 张煜, 杨飞, 尤明熙, 等. 基于GBDT的轨道不平顺状态评价模型研究[J]. 铁道建筑, 2020, 60(08): 111-114.
ZHANG Yu, YANG Fei, YOU Mingxi, et al. Research on evaluation model of track irregularity based on gradient boosting decision tree[J]. Railway Engineering, 2020, 60(08): 111-114.
[86] 陶凯, 王巍, 赵志荣, 等. 轨道几何质量综合量化评价方法[J]. 铁道建筑, 2019, 59(10): 119-122.
TAO Kai, WANG Wei, ZHAO Zhirong, et al. Comprehensive quantitative evaluation method of track geometry quality[J]. Railway Engineering, 2019, 59(10): 119-122.
[87] MA Shuai, GAO Liang, LIU Xiubo, et al. Deep Learning for track quality evaluation of high-speed railway based on vehicle-body vibration prediction[J]. IEEE Access, 2019,7: 185099-185107.
[88] NATHANAIL E. Framework for monitoring and assessing performance quality of railway network infrastructure: hellenic railways case study[J]. Journal of Infrastructure Systems, 2014, 20(4): 4014019.
[89] BARBOSA R S. Evaluation of railway track safety with a new method for track quality identification[J]. Journal of Transportation Engineering, 2016, 142(11): 4016053.
[90] BARBOSA R S. New method for railway track quality identification through the safety dynamic performance of instrumented railway vehicle[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(8): 2265-2275.
[91] JAMSHIDI A, HAJIZADEH S, SU Z, et al. A decision support approach for condition-based maintenance of rails based on big data analysis[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 185-206.
[92] KRAFT S, CAUSSE J, MARTINEZ A. Black-box modelling of nonlinear railway vehicle dynamics for track geometry assessment using neural networks[J]. Vehicle System Dynamics, 2018, 57(9): 1241-1270.
[93] 李再帏, 雷晓燕, 高亮. 无砟轨道不平顺对行车安全性影响的可靠性分析[J]. 铁道学报, 2020, (10): 101-105.
LI Zaiwei, LEI Xiaoyan, GAO Liang. Reliability analysis of impact of ballastless track irregularity on train operation safety[J]. Journal of the China Railway Society, 2020, (10): 101-105.
[94] XU Lei, ZHAI Wanming. A novel model for determining the amplitude-wavelength limits of track irregularities accompanied by a reliability assessment in railway vehicle-track dynamics[J]. Mechanical Systems and Signal Processing, 2017, 86: 260-277.
[95] 康熊, 王卫东, 刘金朝. 基于RAMS的高速铁路轨道平顺状态综合评价体系研究[J]. 中国铁道科学, 2013, 34(02): 13-17.
KANG Xiong, WANG Weidong, LIU Jinzhao. Research on comprehensive evaluation system for track irregularity of high-speed railway based on RAMS[J]. China Railway Science, 2013, 34(02): 13-17.
[96] JANATABADI F, MOHAMMADZADEH S, NOURI M. A robust complementary index for railway maintenance planning based on a probabilistic approach[J]. International Journal of Rail Transportation, 2020: 1-25.
[97] JIANG H, GAO L. Analysis of the vibration characteristics of ballastless track on bridges using an energy method[J]. Applied Sciences, 2020, 10(7): 2289.
[98] MEHRALI M, ESMAEILI M, MOHAMMADZADEH S. Application of data mining techniques for the investigation of track geometry and stiffness variation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(5): 439-453.
[99] SADEGHI J, RAHIMIZADEH Y, KHAJEHDEZFULY A, et al. Development of rail-condition assessment model using ultrasonic technique[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(8): 4020078.
[100] SADEGHI J M, ASKARINEJAD H. Development of track condition assessment model based on visual inspection[J]. Structure and Infrastructure Engineering, 2011, 7(12): 895-905.
[101] SADEGHI J, EMAD M M, ALI Z J. Development of integrated railway ballast quality index[J]. The International Journal of Pavement Engineering, 2021, 22(1): 32-40.
[102] MOHAMMADI R, HE Q, GHOFRANI F, et al. Exploring the impact of foot-by-foot track geometry on the occurrence of rail defects[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 153-172.
[103] LASISI A, ATTOH-OKINE N. Machine learning ensembles and rail defects prediction: multilayer stacking methodology[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2019, 5(4): 4019016.
[104] CAI Xiaopei, LUO Bicheng, ZHONG Yanglong, et al. Arching mechanism of the slab joints in CRTSII slab track under high temperature conditions[J]. Engineering Failure Analysis, 2019, 98: 95-108.
[105] LI Zaiwei, LIU Xiaozhou, HE Yuelei. Identification of temperature-induced deformation for HSR slab track using track geometry measurement data[J]. Sensors, 2019, 19(24): 5446.
[106] LI Zaiwei, LIU Xiaozhou, YANG Fei, et al. Mud pumping defect detection of high-speed rail slab track based on track geometry data[J]. Journal of Transportation Engineering, Part A: Systems, 2022, 148(6).
[107] 杨飞, 王涛, 杨建锋, 等. 板式无砟轨道路基翻浆及整修对轨道不平顺的影响研究[J]. 铁道建筑, 2016, (11): 129-132.
YANG Fei, WANG Tao, YANG Jianfeng, et al. Research on influence of mud-pumping and renovation of slab ballastless track subgrade on track irregularity[J]. Railway Engineering, 2016, (11): 129-132.
[108] 吴文广. 有砟轨道桥梁梁端轨道不平顺成因分析及病害整治[J]. 中国铁路, 2023(2): 66-73.
WU Wenguang. Cause analysis for track irregularity at girder end of ballasted track bridge and its treatment[J]. China Railway, 2023(2): 66-73.
[109] 马帅, 刘秀波, 陈茁. 武广高速铁路轨道几何波形演变规律[J]. 铁道建筑, 2022: 1-5.
MA Shuai, LIU Xiubo, CHEN Zhuo. Evolution laws of track geometry waveform of Wuhan-Guangzhou high speed railway[J]. Railway Engineering, 2022: 1-5.
[110] 张力文, 李再帏, 何越磊, 等. 胀板区段的高低不平顺时频特征及其评估方法[J]. 振动与冲击, 2020, 39(13): 110-115.
ZHANG Liwen, LI Zaiwei, HE Yuelei, et al. Vertical irregularity’s time-frequency characteristics and evaluation method for slab-expanding section [J]. Journal of Vibration and Shock, 2020,39(13): 110-115.
[111] 陈舒阳, 路良恺, 姚永胜. 基于TQI与沉降关联性分析的高铁路基服役状态监测[J]. 土木与环境工程学报(中英文), 2020, 42(06): 63-70.
Chen Shuyang, Lu Liangkai, Yao Yongsheng. Servicestatus monitoring of high-speed railway subgrade based on correlation analysis of track quality index and settlement[J]. Journal of Civil and Environmental Engineering, 2020, 42(06): 63-70.
[112] DAHLBERG T. Some railroad settlement models-A critical review[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 215(4): 289-300.
[113] MOVAGHAR M, MOHAMMADZADEH S. Bayesian Monte Carlo approach for developing stochastic railway track degradation model using expert-based priors[J]. Structure and Infrastructure Engineering, 2020: 1-22.
[114] 李晨钟, 何庆, 陈嵘, 等. 基于SARIMA时间序列模型的高速铁路桥梁段轨道高低不平顺劣化预测[J]. 综合运输, 2020, 42(04): 88-93.
LI Chenzhong, HE Qing, CHEN Rong, et al. The degradation prediction of track surface irregularity of high-speed railway simply-supported beam bridge based on SARlMA Time-series model[J]. Comprehensive Transportation, 2020, 42(04): 88-93.
[115] 朱洪涛, 陈品帮, 魏晖, 等. 基于轨道数据对齐的ARIMA模型的轨道不平顺预测[J]. 振动、测试与诊断, 2019, 39(3): 596-602.
ZHU Hongtao, CHEN Pinbang, WEI Hui, et al. Prediction of track irregularities by the ARIMA model of aligned track data[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(3): 596-602.
[116] HIGGINS C, LIU X. Modeling of track geometry degradation and decisions on safety and maintenance: A literature review and possible future research directions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(5): 1385-1397.
[117] GULER H. Prediction of railway track geometry deterioration using artificial neural networks: a case study for Turkish state railways[J]. Structure and Infrastructure Engineering, 2013, 10(5): 614-626.
[118] POPOV K, De BOLD R, CHAI H K, et al. Big-data driven assessment of railway track and maintenance efficiency using Artificial Neural Networks[J]. Construction and Building Materials, 2022, 349: 128786.
[119] 杜威, 任娟娟, 许雪山, 等. 基于IPSO-LSTM的高速铁路无砟轨道不平顺预测[J]. 铁道科学与工程学报, 2023, 20(3): 753-761.
DU Wei, REN Juanjuan, XU Xueshan, et al. Irregularity prediction of slab track for high-speed railway based on IPSO-LSTM[J]. Journal of Railway Science and Engineering, 2023, 20(3): 753-761.
[120] 杨雅琴, 徐鹏, 李晔, 等. 适用复杂劣化趋势的轨道不平顺鲁棒建模方法[J]. 交通运输系统工程与信息, 2020, 20(5): 156-162.
YANG Yaqin, XU Peng, LI Ye, et al. Robust modeling method for track irregularity of complicated deterioration trend[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 156-162.
[121] 许玉德, 刘一鸣, 沈坚锋. 轨道不平顺预测随机模型的SVM-MC求解方法[J]. 华东交通大学学报, 2018, 35(03): 1-7.
XU Yude, LIU Yiming, SHEN Jianfeng. SVM-MC method for solving stochastic model of track irregularity prediction[J]. Journal of East China Jiaotong University, 2018, 35(03): 1-7.
[122] JEONG M C, LEE S, CHA K, et al. Probabilistic model forecasting for rail wear in seoul metro based on bayesian theory[J]. Engineering Failure Analysis, 2019, 96: 202-210.
[123] ANDRADE A R, TEIXEIRA P F. Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models[J]. Reliability Engineering & System Safety, 2015, 142: 169-183.
[124] BAI Lei, LIU Rengkui, SUN Quanxin, et al. Classification-learning-based framework for predicting railway track irregularities[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 230(2): 598-610.

PDF(1559 KB)

Accesses

Citation

Detail

段落导航
相关文章

/