CO2作用下煤体裂隙发育及三维动力学特性研究

王磊1, 廖志鹏1, 陈礼鹏1, 杨震宇1, 吴雨轩1, 李伟利2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 135-146.

PDF(3885 KB)
PDF(3885 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 135-146.
振动理论与交叉研究

CO2作用下煤体裂隙发育及三维动力学特性研究

  • 王磊1,廖志鹏1,陈礼鹏*1,杨震宇1,吴雨轩1,李伟利2
作者信息 +

Fracture development and 3D dynamic characteristics of coal body under action of CO 2

  • WANG Lei1, LIAO Zhipeng1, CHEN Lipeng*1, YANG Zhenyu1, WU Yuxuan1, LI Weili2
Author information +
文章历史 +

摘要

为研究CO2吸附对煤体裂隙及其三维动力学特性的影响,利用高压气体吸附解吸系统和CT扫描系统分别对煤样开展了CO2吸附实验和扫描实验,实现了对吸附前后煤样内部裂隙的精准提取及数字化定量表征,并结合自主研发的高温高压含气煤岩动静组合加载系统对煤样开展了不同CO2压力和围压作用下三维动态冲击试验,分析了煤样的动态力学参数,最后从数值模拟角度探讨了煤体裂隙发育与强度劣化间的内在联系。结果表明:(1)吸附CO2会促进煤体内部裂隙扩展并伴随新生裂隙的萌发,导致裂隙网络更加复杂,且作用效果随CO2压力升高而加剧。(2)不同CO2压力作用下,煤体三维动态应力-应变曲线变化趋势大致相同,CO2压力和围压均会影响煤体的动力学特性,CO2会弱化煤体的动态强度和动态弹性模量,而围压作用会使煤体的动态强度和动态弹性模量增加。(3)CO2压力的增大会导致煤体孔隙率不断增大,减小煤体有效承载体积,进而导致煤体宏观力学特性的劣化,同时围压的存在会限制煤样环向变形,且围压越大,限制作用越强。

Abstract

To study the effects of CO2 adsorption on coal fracture development and its three-dimensional dynamic properties, a high-pressure gas adsorption-desorption system and a CT scanning system were used to conduct CO2 adsorption and scanning experiments on coal samples. This enabled precise extraction and digital quantitative characterization of internal fractures in the coal samples before and after CO2 adsorption. Additionally, a self-developed high-temperature, high-pressure, gas-bearing coal rock dynamic-static combined loading system was employed to perform three-dimensional dynamic impact tests on the coal samples under varying CO2 and confining pressures. The dynamic mechanical parameters of the coal samples were analyzed, and numerical simulations were used to explore the intrinsic relationship between fracture development and strength degradation in coal. The results showed that: (1) CO2 adsorption promotes internal fracture propagation within coal, leading to the emergence of new fractures and a more complex fracture network, with these effects intensifying as CO2 pressure increases; (2) the three-dimensional dynamic stress-strain curves of coal exhibit a similar trend under different CO2 pressures, with both CO2 pressure and confining pressure influencing the dynamic properties of coal. CO2 weakens the coal's dynamic strength and dynamic elastic modulus, whereas confining pressure enhances both parameters; (3) an increase in CO2 pressure causes a continuous increase in coal porosity, reducing the effective load-bearing volume and leading to a deterioration in the macroscopic mechanical properties of the coal. At the same time, confining pressure restricts circumferential deformation of the coal sample, with greater confining pressure resulting in stronger restriction effects.

关键词

CO2吸附 / CT扫描 / 裂隙发育 / 三维动力学特性 / COMSOL模拟

Key words

CO2 adsorption;CT scanning;fractures evolution;Three-dimensional dynamic characteristics;COMSOL  / simulation

引用本文

导出引用
王磊1, 廖志鹏1, 陈礼鹏1, 杨震宇1, 吴雨轩1, 李伟利2. CO2作用下煤体裂隙发育及三维动力学特性研究[J]. 振动与冲击, 2025, 44(9): 135-146
WANG Lei1, LIAO Zhipeng1, CHEN Lipeng1, YANG Zhenyu1, WU Yuxuan1, LI Weili2. Fracture development and 3D dynamic characteristics of coal body under action of CO 2[J]. Journal of Vibration and Shock, 2025, 44(9): 135-146

参考文献

[1] WEN Hu, MI Wan-sheng, FAN Shi-xing, et al. Determining the reasonable volume required to inject liquid CO2 into a single hole and displace CH4 within the coal seam in bedding boreholes: case study of SangShuPing coal mine[J]. Energy, 2023, 266: 126522.
[2] 梁卫国,张倍宁,黎力,等. 注能(以CO2为例)改性驱替开采理论与实验研究[J]. 煤炭学报,2018,43(10):2839-2847
LIANG Wei-guo, ZHANG Bei-ning, LI Li, et al. Theory and experimental study of CBM recovery driven by energy boosting[J] .Journal of China Coal Society, 2018,43(10):2839-2847.
[3] 黄定国,杨小林,余永强,等. CO2地质封存技术进展与废弃矿井采空区封存CO2[J]. 洁净煤技术,2011,17(05):93-96
HUANG Ding-guo, YANG Xiao-lin, YU Yong-qiang, et al. Technical progress of CO2 geological sequestration and CO2 sequestration by antiquated mine goaf [J]. Clean Coal Technology, 2011, 17(05):93-96.
[4] 陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(06):1808-1820.
CHEN Fu, YU Hao-chen, BIAN Zheng-fu, et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(06): 1808-1820.
[5] 袁亮,张通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(06):2131-2139.
YUAN Liang, ZHANG Tong, ZHANG Qing-he, et al. Construction of green, low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society, 2022, 47(06): 2131-2139.
[6] LV Wei, GONG Hou-jian, DONG Ming-zhe, et al. Potential of nonionic polyether surfactant-assisted CO2 huff-n-puff for enhanced oil recovery and CO2 storage in ultra-low permeability unconventional reservoirs[J]. Fuel, 2024, 359: 130474.
[7] LIU Shi-qi, MA Jing-sheng, SANG Shu-xun, et al. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal[J]. Fuel, 2018, 223: 32-43.
[8] Pirzada M A, Zoorabadi M, Ramandi H L, et al. CO2 sorption induced damage in coals in unconfined and confined stress states: A micrometer to core scale investigation[J]. International Journal of Coal Geology, 2018, 198: 167-176.
[9] 肖畅,王开,张小强,等. 超临界CO2作用后无烟煤力学损伤演化特性及机理[J]. 煤炭学报,2022,47(06):2340-2351.
XIAO Chang, WANG Kai, ZHANG Xiaoqiang, et al. Mechanical damage evolution characteristics and mechanism of anthracite treated with supercritical CO2[J]. Journal of China Coal Society, 2022, 47(06): 2340-2351.
[10] 杜秋浩, 刘晓丽, 王维民, 等. 超临界CO2-水-煤相互作用后冲击载荷下煤的动态响应[J]. 煤炭学报,2019,44(11):3453-3462.
DU Qiu-hao, LIU Xiao-li, WANG Wei-min, et al. Dynamic response of coal under impact load after supercritical CO2-water-coal interaction[J]. Journal of China Coal Society, 2019, 44(11): 3453-3462.
[11] Mcgarr, Simpsom D, Seeber L, et al. Case histories of induced and triggered seismicity[J]. International Geophysics, 2002, 81(A1):647-661.
[12] Mark D, Zoback S M, Gorelick. Earthquake triggering and large-scale geologic storage of carbon dioxide[J]. Proceedings of the National Academy of Sciences, 2012, 109(26): 10164-10168.
[13] Mazumder S, Woif K.-H.A.A., Elewaut K, et al. Application of X-ray computed tomography for analyzing cleat spacing and cleat aperture in coal samples[J]. International Journal of Coal Geology, 2006, 68(3): 205-222.
[14] SHI Xing-hua, PAN Jie-nan, HOU Quan-lin, et al. Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory[J]. Fuel, 2018, 212: 162-172.
[15] 宋勇军,杨慧敏,张磊涛,等. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学,2019,40(S1):152-160.
SONG Yong-jun, YANG Hui-min, ZHANG Lei-tao, et al. CT real-time monitoring on uniaxial damage of frozen red sandstone[J]. Rock and Soil Mechanics, 2019, 40(S1): 152-160.
[16] 王刚,沈俊男,褚翔宇,等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报,2017,42(08):2074-2080.
WANG Gang, SHEN Jun-nan, CHU Xiang-yu, et al. Characterization and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society, 2017, 42(08): 2074-2080.
[17] LIU Xue-mei, FU Yu, FENG Zhong-liang. Simulation of the effect of coal microstructures on the macroscopic mechanical behavior[J]. Advances in Civil Engineering, 2020: 1025952.
[18] 王登科,曾凡超,王建国,等. 显微工业CT的受载煤样裂隙动态演化特征与分形规律研究[J]. 岩石力学与工程学报,2020,39(06):1165-1174.
WANG Deng-ke, ZENG Fan-chao, WANG Jian-guo, et al. Dynamic evolution characteristics and fractal law of loaded coal fractures by micro industrial CT[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(06): 1165-1174.
[19] 王登科,吴岩,魏建平,等. 基于灰度共生矩阵和工业CT扫描的受载含瓦斯煤裂隙动态演化特征[J]. 工程科学学报,2023,45(01):31-43.
WANG Deng-ke, WU Yan, WEI Jian-ping, et al. Fracture dynamic evolution features of a coal-containing gas based on gray level co-occurrence matrix and industrial CT scanning[J]. Chinese Journal of Engineering, 2023, 45(01): 31-43.
[20] 王登科,张航,魏建平,等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报,2021,46(11):3550-3564.
WANG Deng-ke, ZHANG Hang, WEI Jian-ping, et al. Dynamic evolution characteristics of fractures in gas-bearing coal under the influence of gas pressure using industrial CT scanning technology[J]. Journal of China Coal Society, 2021, 46(11): 3550-3564.
[21] 朱川曲,马合意,赵鹏涛. 吸附CO2煤体的力学性能劣化机制[J]. 过程工程学报,2022,22(12):1676-1682.
ZHU Chuan-qu, MA He-yi, ZHAO Peng-tao. Degradation mechanism of mechanical properties for CO2 adsorbed coal[J]. The Chinese Journal of Process Engineering, 2022, 22(12): 1676-1682.
[22] 王海涛,左罗,郭印同,等. 二氧化碳对页岩力学性质劣化规律的影响[J]. 科学技术与工程,2021,21(29):12536-12542.
WANG Hai-tao, ZUO Luo, GUO Yin-tong, et al. Effect of carbon dioxide on the degradation of shale mechanical properties[J]. Science Technology and Engineering, 2021, 21(29): 12536-12542.
[23] 龙莉. 不同压力CO2对页岩作用机理及影响研究[D].重庆大学,2019
LONG Li. Study on the interaction mechanism of shale with different CO2 pressure and its effects on the properties of shale[D]. Chongqing: Chongqing Univrsity, 2019.
[24] 张庆贺,杨科,袁亮,等. 吸附性气体对构造煤的损伤效应试验研究[J]. 采矿与安全工程学报,2019,36(05):995-1001.
ZHANG Qing-he, YANG Ke, YUAN Liang, et al. Experimental study on damage effect of adsorbed gas on structural coal[J]. Journal of Mining & Safety Engineering, 2019, 36(05): 995-1001.
[25] LYU Q, LONG Xin-ping, Ranjith P.G., et al. Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2[J]. Energy, 2018, 147: 1288-1298.
[26] 刘力源,马文成,王卫东. 超临界CO2吸附诱发煤力学性质劣化的双重损伤效应分析[J]. 山东科技大学学报(自然科学版),2020,39(04):79-86.
LIU Li-yuan, MA Wen-cheng, WANG Wei-dong. Dual damage mechanism of supercritical CO2 adsorption-induced weakening effect on coal[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39(04): 79-86.
[27] WANG Ao-lei, ZHANG Dong-ming, LIU Hui-hui, et al. Investigation on the influences of CO2 adsorption on the mechanical properties of anthracite by Brazilian splitting test[J]. Energy, 2022:125053.
[28] 杜秋浩. CO2-水-煤作用对煤渗透性和力学特性影响的试验研究[D].北京: 清华大学,2019
DU Qiu-hao. Experimental study on effects of CO2-water interactions with coal on permeability and mechanical properties[D].Beijing: Tsinghua University, 2019.
[29] ZHOU Y.-X, XIA K, LI X.-B, et al. The ISRM suggested methods for rock characterization,testing and monitoring: 2007-2014[M]: Springer, Cham, 2014: 35-44.
[30] 王磊,陈礼鹏,谢广祥,等.CO2-荷载耦合作用下煤体细观统计损伤本构模型及验证[J].煤炭学报,2024,49(06):2630-2642. 
WANG Lei, CHEN Li-peng, XIE Guang-xiang, et al. Meso-statistical damage constitutive model and validation of coal under CO2- load coupling[J] Journal of China Coal Society, 2024, 49(06):2630-2642.
[31] 袁秋鹏. 三维静载下循环冲击煤体力学特性及累积损伤演化研究[D]. 安徽理工大学, 2022
YUAN Qiu-peng, Study on Mechanical Properties and Cumulative Damage of Cyclic Impact Coal under Three-dimensional Static Load[D].Huainan: Anhui University of Science and Technology, 2022
[32] 王登科,田晓瑞,魏建平,等. 基于工业CT扫描和LBM方法的含瓦斯煤裂隙演化与渗流特性研究[J]. 采矿与安全工程学报,2022,39(02):387-395.
WANG Deng-ke, TIAN Xiao-rui, WEI Jian-ping, et al. Fracture evolution and permeability characteristics in gas-bearing coal based on industrial CT scanning and LBM method[J]. Journal of Mining & Safety Engineering, 2022, 39(02): 387-395.
[33] 耿毅德,梁卫国,刘剑,等. 不同温压条件下油页岩孔裂隙结构演化试验研究[J]. 岩石力学与工程学报,2018,37(11):2510-2519.
GENG Yi-de, LIANG Wei-guo, LIU Jian, et al. Experimental study on the variation of pore and fracture structure of oil shale under different temperatures and pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2510-2519.
[34] WANG An-cheng, WANG Lei, A fractal-based quantitative method for the study of fracture evolution of coal under different confining pressures[J]. Mdpi Ag, 2024, 8(3): 159.
[35] 王磊,刘怀谦,谢广祥,等. 含瓦斯煤孔裂隙结构精细表征及强度劣化机制[J]. 岩土力学,2021,42(12):3203-3216.
WANG Lei, LIU Huai-qian, XIE Guang-xiang, et al. Fine characterization of the pore and fracture structure and strength degradation mechanism of gas bearing coal[J]. Rock and Soil Mechanics, 2021, 42(12): 3203-3216.
[36] CHEN Li-peng, WANG Lei, LIU Huai-qian, et al. Energy dissipation and crack propagation in gas-containing coal under impact loading: An experimental study[J]. Powder Technology, 2024, 441: 119813.
[37] 刘婷婷,向昌,张超,等. 二维静载作用下含正交型交叉裂隙岩体动态力学特性研究[J]. 岩石力学与工程学报,2024,43(02):371-384. 
LIU Ting-ting, XIANG Chang, ZHANG Chao, et al. Research on dynamic mechanical properties of rock mass with orthogonal intersecting cracks under two-dimensional static loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(02):371-384.
[38] 刘俊新,张可,刘伟,等. 不同围压及应变速率下页岩变形及破损特性试验研究[J]. 岩土力学,2017,38(S1):43-52. 
LIU Jun-xin, ZHANG Ke, LIU Wei, et al. Experimental study of mechanical behaviours of shale under different confining pressures and different strain rates[J]. Rock and Soil Mechanics, 2017, 38(S1): 43-52.
[39] YA Meng, LI Zhi-ping. Experimental comparisons of gas adsorption, sorption induced strain, diffusivity and permeability for low and high rank coals[J]. Fuel, 2018: 914-923.
[40] DUAN Li-jiang, XIA Tian-yu, QU Liang-chao, et al. A comprehensive explanation to CO2-induced coal swelling[J]. Energy & Fuels, 2020, 34(11): 14458-14463.
[41] 梁卫国,贺伟,阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J]. 煤炭学报,2022,47(07):2557-2568.
LIANG Wei-guo, HE Wei, YAN Ji-wei. Weakening and fracturing mechanism of mechanical properties of coal and rock caused by supercritical CO2[J]. Journal of China Coal Society, 2022, 47(07): 2557-2568.
[42] BAO X, CAO J, ZHENG W, et al. Study on the damage model of coal rock caused by hydraulic pressure and electrical impulse in borehole[J]. Geofluids, 2021, 2021: 1-19.
[43] 李清川, 王汉鹏, 袁亮, 等. 吸附气体量对煤岩力学特性损伤劣化的试验研究[J]. 中国矿业大学学报, 2019, 48(05): 955-965.
(LI Qing-chuan, WANG Han-peng, YUAN Liang, et al. Experimental study of damage and degradation of coal by adsorbed gas amount[J]. Journal of China University of Mining & Technology, 2019, 48(05): 955-965.)
[44] 韩磊. 热固流耦合模型的瓦斯抽采模拟[J]. 辽宁工程技术大学学报(自然科学版),2013,32(12):1605-1608.
HAN Lei. Numerical simulation of gas drainage based on fluid-sol-id-heat coupling model[J]. Journal of Liaoning Technical Univer-sity( Natural Science Edition), 2013, 32(12): 1605-1608.
[45] 杨天鸿, 陈仕阔, 朱万成, 等. 煤层瓦斯卸载抽放动态过程的气-固耦合模型研究[J]. 岩土力学,2010,31(7);2247-2252.
YANG Tian-hong, CHEN Shi-kuo, ZHU Wang-cheng, et al.Coupledmodel of gas-solid in coal seams based on dynamic process ofpressure relief and gas drainage[J]. Rock and Soil Mechanics, 2010, 31(7): 2247-2252.
[46] 马忠. 基于热流固耦合的瓦斯抽采数值模拟研究[D]. 淮南:安徽理工大学,2014.
MA Zhong. Study on Numerical simulation of gas drainage based onthermal-hydraulic-mechanical coupling[D]. Huainan: Anhui Uni-versity of Science and Technology, 2014.
[47] 王永亮,庄茁,柳占立,等. 横观各向同性岩石力学-化学-损伤耦合模型[J]. 工程力学,2017,34(9):102-109.
WANG Yong-liang, ZHAUNG Zhuo, LIU Zhan-li, et al. Finite elementanalysis of transversely isotropic rock with mechanical-chemical-damage coupling[J]. Engineering Mechanics, 2017, 34(9): 102-109.
[48] 尹光志,蒋长宝,许江,等. 含瓦斯煤热流固耦合渗流实验研究[J]. 煤炭学报,2011,36(9):1495-1500.
YIN Guang-zhi, JIANG Chang-bao, XU Jiang, et al. Experimentalstudy of thermo-fluid-solid coupling seepage of coal containing gas[J]. Journal of China Coal Society, 2011, 36(9): 1495-1500.
[49] 王金鑫,周动,冯雪健,等. 煤的非均匀势阱分布及其对甲烷吸附/解吸的影响[J]. 煤炭学报,2023,48(10):3818-3830.
WANG Jin-xin, ZHOU Don, FENG Xue-jian, et al. Study of non-uniform potential well distribution of coal and its effect on methane adsorption/desorption[J]. Journal of China Coal Society, 2023, 48(10):3818-3830.
[50] 饶耕玮,刘晓东,刘平辉,戴朝成,梁海安. 高放废物黏土岩地质处置库预选区围岩物理特性及力学性质[J]. 科学技术与工程,2020,20 (35): 14752-14759.
RAO Geng-wei, LIU Xiao-dong, LIU Ping-hui, et al. Physical and mechanical properties of host rock in pre-selection area of high level radioactive waste clay rock geological repository[J]. Science Tech-nology and Engineering, 2020, 20(35): 14752-14759.
[51] FANG Hui-huang, SANG Shu-xun, LIU Shi-qi. The coupling mechanism of the thermal-hydraulic-mechanical fields in CH4-bearing coal and its application in the CO2-enhanced coalbed methane recovery[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106177.
[52] 丁鑫,肖晓春,潘一山,等. 单轴压缩条件下不同冲击倾向性煤岩损伤与破碎能演化规律研究[J]. 采矿与安全工程学报,2022,39(03): 517-526.
DING Xin, XIAO Xiao-chun, PAN Yi-shan, et al. Study on damage evolution and fracture energy of coal with different bursting liability under uniaxial compressive test[J]. Journal of Mining & Safety Engineering, 2022, 39(03): 517-526.

PDF(3885 KB)

87

Accesses

0

Citation

Detail

段落导航
相关文章

/