弦理论与刚性索理论频率误差曲线在工程中的应用

蔡汶秀1, 郑罡1, 孙测世2, 唐宇1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 147-152.

PDF(1119 KB)
PDF(1119 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 147-152.
振动理论与交叉研究

弦理论与刚性索理论频率误差曲线在工程中的应用

  • 蔡汶秀1,郑罡*1,孙测世2,唐宇1
作者信息 +

Application of frequency error curve of string theory and rigid cable theory in engineering

  • CAI Wenxiu1, ZHENG Gang*1, SUN Ceshi2, TANG Yu1
Author information +
文章历史 +

摘要

弦理论方法有效识别索力对拉索的评估具有重要意义。为解决拉索的弦理论在工程应用问题,本文通过拉索系统动力学方程的无量纲化,使得决定系统的唯一参数为名义长细比。绘制无量纲名义长细比-频率曲线,利用弦理论和刚性索理论的频率差异性,给出弦理论索力计算公式满足特定索力误差需求的适用范围。对于超出适用界限的部分,以频率误差上限为例,通过幂次函数推导出三参数频率修正公式和索力修正公式,在此基础上,提出一种无量纲体系下的索力识别算法。由文献算例,验证了索力修正公式的可行性,并应用于实桥测试中,索力识别误差均满足工程需求。结果表明:①不同精度的频率误差曲线可满足弦理论特定的工程应用,为解决实际工程问题提供理论支撑。②该修正公式简洁直观、形式统一,且理论误差在2%以内,可覆盖工程拉索名义长细比的适用范围。

Abstract

String theory play a crucial role in effectively identifying cable forces for the assessment of cables. In order to solve the problem of cable string theory applied in engineering, this paper non-dimensionalizes the dynamics equation of the cable system, making the only parameter determining the system the nominal slenderness ratio. By plotting the non-dimensional nominal slenderness ratio-frequency curve and utilizing the frequency differences between string theory and rigid cable theory, the paper provides the applicable range for the string theory cable force calculation formula to meet specific cable force error requirements. For parts beyond the applicable limits, taking the frequency error upper limit as an example, a three-parameter frequency correction and cable force correction formula is proposed through a power function. On this basis, an algorithm for the identification of the cable force in the dimensionless system is proposed. The feasibility of the cable force correction formula is verified by literature examples and applied in actual bridge testing. The cable force identification errors all meet the engineering requirements. The results show: ① Frequency error curves of different accuracies can meet the specific engineering applications of string theory, providing theoretical support for solving practical engineering problems. ② The correction formula is concise , intuitive, unified in form, and its theoretical error is within 2%. The applicability of the nominal slenderness ratios covers all engineering cables.

关键词

弦理论 / 无量纲体系 / 索力识别 / 修正公式

Key words

String theory / dimensionless system / cable force identification / correction formula

引用本文

导出引用
蔡汶秀1, 郑罡1, 孙测世2, 唐宇1. 弦理论与刚性索理论频率误差曲线在工程中的应用[J]. 振动与冲击, 2025, 44(9): 147-152
CAI Wenxiu1, ZHENG Gang1, SUN Ceshi2, TANG Yu1. Application of frequency error curve of string theory and rigid cable theory in engineering[J]. Journal of Vibration and Shock, 2025, 44(9): 147-152

参考文献

[1] 王天鹏,张建仁,蒋淑霞,等.基于雷达振动测试技术的时变索力识别方法研究[J].振动与冲击,2023,42(09):205-212. 
WANG Tian-peng, ZHANG Jian-ren, JIANG Shu-xia, et al Time-varying cable force identification method based on radar vibration measurement technique[J]. Journal of Vibration and Shock,2023,42(09):205-212.
[2] LUO K, KONG X, DENG L, et al. Target-free measurement of cable forces based on computer vision and equivalent frequency difference[J]. Engineering Structures, 2024, 314: 118390.
[3] 李素贞,LAPUERTA Enrique Cavero.基于振动测试的张弦结构拉索索力识别[J].振动与冲击,2016,35(23):148-152+184.
LI Su-Zhen, LAPUERTA Enrique-Cavero. Cable tension identification of cable-supported structures based on vibration tests[J]. Journal of vibration and shock, 2016, 35(23): 148-152+18.
[4] 郑罡,倪一清,高赞明,等.斜拉索张力测试和参数评估的理论和应用[J].土木工程学报,2005,(03):64-69.
ZHENG Gang, Ni Yi-Qing, GAO Zang-Ming, et al. Theory and implementation of tension testing and parameter estimation of stay-cables[J].CHINA CIVIL ENGINEERING JOURNAL,,2005,(03):64-69.
[5] SHIMADA T. Estimating method of cable tension from natural frequency of high mode[J]. Doboku Gakkai Ronbunshu, 1994, 1994(501): 163-171.
[6] NI Y Q, Ko J M, Zheng G. Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity[J]. Journal of Sound and Vibration, 2002, 257(2): 301-319.
[7] 樊平,刘刚,姜维,等.刚度对缆索桥梁短索索力的影响[J].公路交通科技,2023,40(06):113-118+125.
FAN Ping, LIU Gang, JIANG Wei, et al. Influence of Stiffness on Short Cable Force of Cable-supported Bridge[J]Journal of Highway and Transportation Research and Development, 2023, 40(06):113-118+125.
[8] ZUI H, SHINKE T, NAMITA Y. Practical formulas for estimation of cable tension by vibration method[J]. Journal of structural engineering, 1996, 122(6): 651-656.
[9] MEHRABI A B, TABATABAI H. Unified finite difference formulation for free vibration of cables[J]. Journal of Structural Engineering, 1998, 124(11): 1313-1322.
[10] REN W X, Peng X L, Lin Y Q. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge[J]. Engineering Structures, 2005, 27(4): 535-548.
[11] 孙永明,孙航,任远.频率法计算匀质竖直拉索索力的实用公式[J].工程力学,2013,30(04):211-218.
SUN Yong-Ming, SUN Hang, REN Yuan. Practical formulas to calculate tensions of vertical cable with uniform properties by frequency method[J]. Engineering mechanics, 2013, 30(04):211-218.
[12] 甘泉,王荣辉,饶瑞.基于振动理论的索力求解的一个实用计算公式[J].力学学报,2010,42(05):983-988.
GAN Quan, WANG Rong-Hui, RAO Rui. Practical formula for estimation on the tensional force of cable by its measured natural frequencies[J].Chinese Journal of Theoretical and Applied Mechanics.,2010,42(05):983-988.
[13] SHINKE T, Hironaka K, Zui H, et al. Practical formulas for estimation of cable tension by vibration method[J]. Proceedings of the Japan Society of Civil Engineers, 1980, 1980(294):25-32.
[14] TABATABAI H, MEHRABI A B, MORGAN B J, et al. Non-destructive bridge evaluation technology: Bridge stay cable condition assessment[J]. Final report submitted to the FHWA, Construction Technology Laboratories, Inc., Skokie, IL, 1998.
[15] IRVINE H M, CAUGHEY T K. The linear theory of free vibrations of a suspended cable[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974, 341(1626): 299-315.
[16] 郑罡,孙测世,张晓东等.刚性索动力学系统的约化与索力测量[J].土木工程学报,2021,54(11):71-78.
ZHENG Gang, SUN Ce-Shi, ZHANG Xiao-Dong, et al. Coefficient normalization of the dynamic equation of rigid cables and itsapplication to cable tension measurements[J]. China civil engineering journal, 2021, 54(11): 71-78.
[17] SUN C, ZHENG G, ZHANG X, et al. A decoupled algorithm for cable parameter identification by frequency‐ratio‐offset[J]. Computer‐Aided Civil and Infrastructure Engineering, 2023,38(14): 1998-2012
[18] 单德山,董俊,刘昕玥,等.具有减震器的吊杆施工期索力识别[J].中国公路学报,2015,28(08):31-39.
SHAN De-Shan, DONG Jun, LIU Xin-Yue, et al. Tension identification of suspender with damper under constructions[J]. China journal of highway and transport, ,2015, 28(08): 31-39.
[19] HUANG Y H, FU J Y, WANG R H ,et al. Unified Practical Formulas for Vibration-Based Method of Cable Tension Estimation[J].Advances in Structural Engineering, 2016.
[20] YU C P. Tension prediction for straight cables based on effective vibration length with a two-frequency approach[J]. Engineering Structures, 2020, 222: 111121.
[21] SUN J B, ZHAO Z Z, ZHAO H H. Measuring Methods of Cable Tension in Cable-Stayed Bridges[J]. Advanced Materials Research, 2011, 295-297:1230-1235.
[22] 苏成,徐郁峰,韩大建.频率法测量索力中的参数分析与索抗弯刚度的识别[J].公路交通科技, 2005, 22(5):75-78.
SU Cheng, XU Yu-Feng‚ HAN Da-Jian. Parameter Analysis and Identification of Bending Stiffness of Cables During Tension Measurements by Frequency Method[J]. Journal of Highway and Transportation Research and Development, 2005, 22(5): 75-78.
[23] ZHANG X, PENG J, CAO M, et al. Identification of instantaneous tension of bridge cables from dynamic responses: STRICT algorithm and applications[J]. Mechanical systems and signal processing, 2020, 142: 106729.

PDF(1119 KB)

Accesses

Citation

Detail

段落导航
相关文章

/