全垫升式气垫船柔性围裙气囊模态特性研究

韦俊宏1, 2, 袁昱超1, 2, 3, 唐文勇1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 153-160.

PDF(2638 KB)
PDF(2638 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 153-160.
振动理论与交叉研究

全垫升式气垫船柔性围裙气囊模态特性研究

  • 韦俊宏1,2,袁昱超*1,2,3,唐文勇1,2
作者信息 +

Modal characteristics of flexible skirt airbag for air cushion vehicle

  • WEI Junhong1,2, YUAN Yuchao*1,2,3, TANG Wenyong1,2
Author information +
文章历史 +

摘要

为了解全垫升式气垫船柔性围裙气囊充气成型后的振动特性及动态响应行为,采用控制体积法模拟围裙气囊充气成型过程,使气囊达到充气平衡状态。基于此动态平衡状态,考虑充气预应力对气囊固有振动特性的影响,对气垫船三维围裙气囊结构进行模态分析,求解气囊固有频率与振型。针对复杂的整体模态,根据空间特征解耦为轴向模态与面内模态,分析解耦后模态的振动特性,并重新进行组合。低阶轴向模态和面内模态均表现出充气结构的整体刚度特性,高阶轴向模态反映局部振动特性,高阶面内模态呈现复杂的“花瓣形”;将轴向模态和面内模态进行组合,得到气囊振型定性描述的模态数据库;2-6Hz频率区间内,以整体振型为主,6-10Hz区间内,模态耦合复杂,振型较难区分,轴向模态和面内模态半波数相同的振型,会同时存在两种面内模态形式。研究结果可为气垫船围裙气囊动态响应特性研究提供有益的参考。

Abstract

In order to understand the vibration characteristics and dynamic response behavior of the air cushion vehicle (ACV) flexible skirt airbags after inflation, the control volume method was used to simulate the inflation process, allowing the airbags to reach an inflation equilibrium state. Based on this dynamic equilibrium state, The prestress effect on the natural vibration characteristics was considered, and modal analysis was conducted to solve the frequencies and mode shapes. The modes were decoupled into axial and in-plane modes based on spatial characteristics for the complex overall modes. The vibration characteristics of decoupled modes were analyzed and recombined. The results show that the low-order axial and in-plane modes both exhibit the overall stiffness characteristics; the high-order axial modes reflect local vibration characteristics, while the high-order in-plane modes present complex "petal-shaped" patterns; the axial modes and in-plane modes are combined to obtain a modal database for qualitative description; in the 2-6 Hz range, the overall vibration shapes predominate; in the 6-10 Hz range, the modal coupling becomes complex, and the vibration shapes are difficult to distinguish; overall modes with the same half-wave number for both axial and in-plane modes will simultaneously present two types of in-plane modal forms. The results can provide valuable references for the research on the dynamic response characteristics of skirt airbags in ACV.

关键词

全垫升式气垫船 / 柔性围裙气囊 / 含预应力薄膜 / 控制体积法 / 模态特性分析

Key words

air cushion vehicle / flexible skirt airbag / prestressed membrane / control volume method / modal characteristic analysis

引用本文

导出引用
韦俊宏1, 2, 袁昱超1, 2, 3, 唐文勇1, 2. 全垫升式气垫船柔性围裙气囊模态特性研究[J]. 振动与冲击, 2025, 44(9): 153-160
WEI Junhong1, 2, YUAN Yuchao1, 2, 3, TANG Wenyong1, 2. Modal characteristics of flexible skirt airbag for air cushion vehicle[J]. Journal of Vibration and Shock, 2025, 44(9): 153-160

参考文献

[1] 王露寒,唐文勇,徐圣杰,等. 气垫围裙连接结构数值仿真及改进设计[J]. 中国舰船研究,2021,16(03):120-127.
WANG Lu-han, TANG Wen-yong, XU Sheng-jie, et al. Numerical simulation and improvement design of air cushion skirt connecting structure [J]. Chinese Journal of Ship Research, 2021, 16(3): 120-127.
[2] 张  平,陈海涛,鲍文倩,等. 气垫船波浪载荷预报方法研究[J]. 船舶工程,2016,38(12):10-13.
ZHANG Ping, CHEN Hai-tao, BAO Wen-qian, et al. Study of prediction method of wave loads on ACV [J]. Ship Engineering, 2016, 38(12): 10-13.
[3] 熊英蕾. 气垫船垫升性计算与分析[J]. 船舶工程,2020, 42(S1):78-79+258.
XIONG Ying-Lei. Calculation and analysis of hovercraft lifting [J]. Ship Engineering, 2020, 42(S1): 78-79+258.
[4] 邱志成,朱许先. 带开孔的柔性结构振动模态特性分析[J]. 空间控制技术与应用,2022,48(06):1-11.
QIU Zhi-cheng, ZHU Xu-xian. Vibration modal characteristics analysis of flexible structure with opening [J]. Aerospace Control and Application, 2022, 48(06): 1-11.
[5] 李维博,王维民,李  铭,等. 轴向预紧作用下的组合转子轴系模态特性研究[J]. 振动与冲击,2024,43(04):76-86+157.
LI Wei-bo, Wang Wei-min, LI Ming, et al. A study on modal characteristics of combined rotor shafting under axial preload [J]. Journal of Vibration and Shock, 2024, 43(04): 76-86+157.
[6] 张  帅. 全垫升气垫船全船及局部结构振动特性研究[D]. 镇江:江苏科技大学,2023.
ZHANG Shuai. Study on global and local vibration characteristics of air cushion craft [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023.
[7] Russian Maritime Register of Shipping. Rules for the Classification and Construction of High-speed Craft[S]. 2013: 76-79.
[8] 冀  楠,张洪雨,刘  洋,等. 气垫船舶与水面冲击过程的模型仿真分析[J]. 计算机仿真,2015,32(11):1-5.
JI Nan, ZHANG Hong-yu, LIU Yang, et al. Model simulation and analysis of impact process for air ship on water surface [J]. Computer Simulation, 2015, 32(11): 1-5.
[9] 曹林冲,唐文勇,张宗科,等. 基于向量式有限元的气垫船围裙张力计算方法[J]. 中国造船,2017,58(02):89-96.
CAO Lin-chong, TANG Wen-yong, ZHANG Zong-ke, et al. Calculation of skirt tension for air cushion vehicle based on vector form intrinsic finite element [J]. Shipbuilding of China, 2017, 58(02): 89-96.
[10] GAO X, CHENG Z, CAO L, et al. Nonlinear two-dimensional analysis of manifold marine inflated membrane structures using vector form intrinsic finite element method [J]. Ocean Engineering, 2023, 271: 113813.
[11] 徐圣杰,熊逸凡,陈科杰,等. 气垫船围裙成型数值计算与试验研究[J]. 中国造船,2022,63(01):51-64.
XU Sheng-jie, XIONG Yi-fan, CHEN Ke-jie, et al. Numerical and experimental research on skirt configuration of air cushion vehicles [J]. Shipbuilding of China, 2022, 63(01): 51-64.
[12] 吴靖恒. 全垫升气垫船首部囊指响应特性的数值研究[D]. 哈尔滨:哈尔滨工程大学,2022.
WU Jing-heng. Numerical study on response characteristics of forefinger of ACV [D]. Harbin: Harbin Engineering University, 2022.
[13] XU S, CHEN K, TANG Y, et al. Research on the transverse stability of an air cushion vehicle hovering over the rigid ground [J]. Ships and Offshore Structures, 2022, 17(10): 2300-2316.
[14] 文桂林,雷志华,尹建武,等. 全向式多室连通气囊的缓冲特性研究[J]. 振动与冲击,2013,32(08):13-17+30.
WEN Gui-lin, LEI Zhi-hua, YIN Jian-wu, et al. Cushion characteristics of an omni-directional and multi-chamber airbag [J]. Journal of Vibration and Shock, 2013, 32(08): 13-17+30.
[15] 张  华,孟  光,刘汉武,等. 行星软着陆气囊缓冲系统动力学仿真研究[J]. 振动与冲击,2016,35(20): 125-129+208.
ZHANG Hua, MENG Guang, LIU Han-wu, et al. Dynamics simulation on a planetary airbag buffering and landing system [J]. Journal of Vibration and Shock, 2016, 35(20): 125-129+208.
[16] 张鹏飞,卫剑征,陈雪岩,等. 大载重气囊缓冲性能分析及多目标优化[J]. 振动与冲击,2020,39(24):91-98+142.
ZHANG Peng-fei, WEI Jian-zheng, CHEN Xue-yan, et al. Analysis and multi-objective optimization for buffer performance of heavy landing airbags [J]. Journal of Vibration and Shock, 2020, 39(24): 91-98+142.
[17] 盛瑞琨,胡建辉,杨德庆. 气垫船在内压作用下的水下辐射声功率分析[J]. 中国舰船研究,2023,18(6):60-65.
SHENG Rui-kun, HU Jian-hui, YANG De-qing. Analysis of underwater radiation sound power of air cushion vehicle under cushion pressure [J]. Chinese Journal of Ship Research, 2023, 18(6): 60-65.
[18] 徐圣杰,张宗科,张海鹏,等. 气垫船运动特性及其非线性因素研究进展[J]. 船舶力学,2020,24(05):670-680.
XU Sheng-jie, ZHANG Zong-ke, ZHANG Hai-peng, et al. Progress in research of the dynamics of an air cushion vehicle and its nonlinear influence factors [J]. Journal of Ship Mechanics, 2020, 24(05): 670-680.
[19] JIANG Y. Numerical Study of section geometry of flexible bag of air cushion vehicle subjected to slamming loads [J]. Ocean Engineering, 2021, 227: 108894.
[20] LI Q, GUO X, QING Q, et al. Dynamic deflation assessment of an air inflated membrane structure [J]. Thin-Walled Structures, 2015, 94, 446-456.
[21] JIANG Y, TANG W. Numerical analysis of the water entry of flexible bags of air cushion vehicles considering a diaphragm [J]. Ocean Engineering, 2022, 246: 110662.

PDF(2638 KB)

Accesses

Citation

Detail

段落导航
相关文章

/