不同坡面形式加筋土边坡抗震性能的振动台试验研究

孟亚1, 徐超1, 2, 杨阳1, 2, 马林1, 韦小当1, 贾斌3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 195-202.

PDF(2888 KB)
PDF(2888 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 195-202.
地震科学与结构抗震

不同坡面形式加筋土边坡抗震性能的振动台试验研究

  • 孟亚1,徐超1,2,杨阳*1,2,马林1,韦小当1,贾斌3
作者信息 +

Shaking table test study on aseismic performance of reinforced soil slopeswith different slope face patterns

  • MENG Ya1, XU Chao1,2, YANG Yang*1,2, MA Lin1, WEI Xiaodang1, JIA Bin3
Author information +
文章历史 +

摘要

土工合成材料加筋土边坡在我国西藏高海拔强震区基础设施建设中的应用正逐渐增加,不同坡面形式在加筋土边坡遭遇地震时发挥的保障效果各异,但以往针对不同坡面形式加筋土边坡抗震性能的研究较为缺乏。因此,本文通过开展土工袋和格宾笼护坡的加筋土边坡振动台模型试验,研究不同地震峰值加速度作用下坡面形式对土工格栅加筋土边坡动力响应特征的影响,重点关注地震作用下边坡加速度放大系数、坡面位移、坡顶沉降以及筋材轴力等分布规律。试验结果表明,加筋土边坡各处加速度放大系数均随高度的增大而增大,坡面形式对加速度放大系数的影响很小;整体上坡面峰值位移随高度增加而逐渐增大,除边坡顶部外,格宾笼组峰值位移小于土工袋组,且震后坡面位移得到了一定程度的恢复;坡顶沉降随地震峰值加速度的增大逐渐增大,格宾笼组的坡顶沉降大于土工袋组;土工袋组筋材轴力整体上大于格宾笼组,地震作用下顶部筋材轴力增量最大;在1.0g地震峰值加速度下,采用土工袋及格宾笼护坡的土工格栅加筋土边坡均具有良好的抗震性能。

Abstract

Geosynthetic-reinforced soil (GRS) slopes are increasingly being utilized in infrastructure construction in the high-altitude, seismically active regions of Tibet, China. There are varying protective effects of different slope face patterns during earthquakes. However, research on the seismic performance of GRS slopes with different slope face patterns remain limited. This study conducted shaking table model tests on GRS slopes with soilbags and gabion meshboxs as slope face patterns to study the influence of slope face patterns on the dynamic response characteristics of GRS slope. The focus was on examining the distribution of acceleration amplification factors, slope displacements, slope settlements, and geogrid axial forces under seismic loads. The test results show that the acceleration amplification factors increase with height across all GRS slopes, with minimal impact from different slope face patterns. Generally, the peak displacement of the slope surface increase with slope height. Except for the top, the peak displacement of the gabion meshbox group is smaller than that of the soilbag group, and the post-seismic displacement showes partial recovery. Slope settlement increase with rising PGAs, with the gabion meshbox group experiencing greater settlement than the soilbag group. The geogrid axial force of the soilbag group is generally higher than that of the gabion meshbox group, with the maximum geogrid strain increments occurring at the top of the slope due to seismic action. Under a PGA of 1.0g, both the geogrid reinforced soil slopes using soilbags and gabion meshboxs as slope face patterns demonstrate excellent seismic performance. 

关键词

土工格栅 / 加筋土边坡 / 坡面形式 / 振动台试验 / 抗震性能

Key words

geogrid / reinforced soil slope / slope face patterns / shaking table test / seismic performance

引用本文

导出引用
孟亚1, 徐超1, 2, 杨阳1, 2, 马林1, 韦小当1, 贾斌3. 不同坡面形式加筋土边坡抗震性能的振动台试验研究[J]. 振动与冲击, 2025, 44(9): 195-202
MENG Ya1, XU Chao1, 2, YANG Yang1, 2, MA Lin1, WEI Xiaodang1, JIA Bin3. Shaking table test study on aseismic performance of reinforced soil slopeswith different slope face patterns[J]. Journal of Vibration and Shock, 2025, 44(9): 195-202

参考文献

[1] 任洋, 李天斌, 杨玲, 等. 基于离心模型试验与数值计算的超高陡加筋土填方边坡稳定性分析[J]. 岩土工程学报, 2022, 44 (05): 836-844.
REN Yang, LI Tianbin, YANG Ling, et al. Stability analysis of ultra-high-steep reinforced soil-filled slopes based on centrifugal model tests and numerical calculation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (05): 836-844.
[2] JIA M C, ZHU W K, XU C. Performance of a 33m high geogrid reinforced soil embankment without concrete panel [J]. Geotextiles and Geomembranes, 2020, 49 (1): 122-129.
[3] YAZDANDOUST M. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2017, 97: 216–232.
[4] LING H I, LESHCHINSKY D, CHOU N N S. Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during 1999 Ji-Ji earthquake of Taiwan[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(4): 297-313.
[5] KOERNER R M, KOERNER G R. An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls[J]. Geotextiles and Geomembranes, 2018, 46(6): 904–912.
[6] LATHA G M, SANTHANAKUMAR P. Seismic response of reduced-scale modular block and rigid faced reinforced walls through shaking table tests[J]. Geotextiles and Geomembranes, 2015, 43(4): 307-316.
[7] HUANG L, HE W L, HOU Y J, et al. Seismic behavior of flexible geogrid wrap-reinforced soil slope[J/OL].  Advances in Civil Engineering, 2021, [2021-02-23].  https://doi.org/10.1155/2021/8833662. 
[8] 蔡晓光, 王学鹏, 李思汉, 等. 复合格宾土工格栅加筋土挡墙模型振动台试验[J]. 振动工程学报, 2023, 36 (03): 767-775.
CAI Xiaoguang, WANG Xuepeng, LI Sihan, et al. Shaking table test on the model of reinforced soil retaining wall with composite Gabion and geogrid[J]. Journal of Vibration Engineering, 2023, 36 (03): 767-775.
[9] 罗敏敏, 徐超, 杨阳, 等. 加筋土柔性桥台复合结构抗震性能试验[J]. 同济大学学报(自然科学版), 2019, 47 (11): 1541-1547.
LUO Minmin, XU Chao, YANG Yang, et al. Seismic performance of geosynthetic reinforced soil-integrated structure in shaking table test[J]. Journal of Tongji University (Natural Science), 2019, 47 (11): 1541-1547.
[10] 李昀, 杨果林, 林宇亮. 水平地震作用下绿色加筋格宾挡土墙动力特性试验研究[J]. 中南大学学报(自然科学版), 2010, 41 (01): 347-352.
LI YUN, YANG Guolin, LIN Yuliang. Dynamic characteristics of green reinforced gabion walls subjected to horizontal seismic loading[J]. Joumal of Central South University (Science and Technology), 2010, 41 (01): 347-352.
[11] 杨广庆, 徐超, 张孟喜. 土工合成材料加筋土结构应用技术指南[M]. 北京: 人民交通出版社, 2016.
YANG Guangqing, XU Chao, ZHANG Mengxi. Geosynthetics reinforcement soil structure application guidance[M]. Beijing: China Communications Press, 2016.
[12] 王燕华, 程文瀼, 陆飞, 等. 地震模拟振动台的发展[J]. 工程抗震与加固改造, 2007, 29(5): 53-56. 
WANG Yanhua, CHENG Wenxiang, LU Fei, et al. Development of the Shaking Table[J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29(5): 53-56.
[13] Xiao F U, Zhang J J, Zhou L R. Shaking table test of seismic response of slope reinforced by combination of anti-slide piles and multi-frame foundation beam with anchor cable[J]. Rock and Soil Mechanics, 2017, 38(2): 462-470. 
[14] 蔡晓光, 李思汉, 黄鑫. 水平地震作用下双级加筋土挡墙格栅应变及破裂面分析[J]. 岩土工程学报, 2017, 40(8): 1528-1534.
CAI Xiaoguang, LI Sihan, HUANG Xin. Geogrid strain and failure surface of two-stage reinforced soil retaining wall under horizontal seismic loading[J]. Chinese Journal of Geotechnical Engineering, 2017, 40(8): 1528-1534.
[15] 蔡葵. 双向地震作用下加筋边坡动力分析[D]. 武汉:华中科技大学, 2021.
CAI Kui. Dynamic analysis of reinforced soil slope under bi-directional earthquake loading[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[16] 王俊杰. 土工格栅反包型加筋土结构抗震性能研究[D]. 郑州:郑州大学, 2019.
WANG Junjie. Study on seismic behavior of wrapping geogrid reinforced soil structures[D]. Zhengzhou: Zhengzhou University, 2019.

PDF(2888 KB)

Accesses

Citation

Detail

段落导航
相关文章

/