抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究

董霄峰1, 2, 时泽坤1, 2, 彭泓浩1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 214-222.

PDF(2879 KB)
PDF(2879 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 214-222.
声学研究与应用

抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究

  • 董霄峰*1,2,时泽坤1,2,彭泓浩1,2
作者信息 +

Modal parametric identification method of offshore wind power structure to resist effects of low-frequency high-energy noise

  • DONG Xiaofeng*1,2, SHI Zekun1,2, PENG Honghao1,2
Author information +
文章历史 +

摘要

模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,本文提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CVS)。首先利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise,CEEMDAN)滤除原始信号中的高频噪声,随后通过麻雀优化算法(sparrow's optimization algorithm,SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition,VMD)的信号分解层数K和惩罚因子 ,实现信号的VMD自适应优化分解以剔除低频高能噪声影响,最后再采用随机子空间方法(SSI)实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证,结果表明,相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性。同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。

Abstract

Modal parameters are the key indexes to reflect the safe operation of offshore wind turbine (OWT) structures. However, the complex and changeable ocean environment will lead to a large amount of low-frequency and high-energy noise mixed in the measured vibration signals, which seriously affects the accuracy of modal identification. To achieve the accurate identification of modal parameters of OWT structures, one modal parameter identification method (CVS) that can resist the influence of low-frequency high-energy noise was proposed in this research. Firstly, the method filters out the high-frequency noise in the original signal using the Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). Then the Sparrow's Optimization Algorithm (SSA) is utilized to iteratively calculate the number of signal decomposition layers K and the penalty factor α of the adaptive deterministic variational modal decomposition (VMD) by the minimum envelope entropy as the fitness function, achieving VMD adaptive optimization decomposition of the signal to eliminate the influence of low-frequency high-energy noise. Finally, the stochastic subspace identification (SSI) method is used to identify and extract modal parameters from the signal. The study was carried out to verify the identification effect of the constructive simulation noise-containing signals and the prototype observation signals, respectively. The results show that the CVS method has better effectiveness and accuracy in parameters such as signal-to-noise ratio, waveform similarity coefficient, and relative error compared with the traditional modal identification method. Meanwhile, the method has strong processing capability and good noise reduction effect on the measured signals, and can accurately identify the structural natural frequency, impeller rotation frequency (1P) and blade sweep frequency (3P). It has good engineering applicability and can provide a new idea for identifying the modal parameters of OWT structures based on measured data in the future. 

关键词

海上风电 / 模态参数识别 / 低频高能噪声 / 完全自适应噪声集合经验模态分解(CEEMDAN) / 变分模态分解法(VMD)

Key words

Offshore wind power / Modal parameter identification / Low-frequency high-energy noise / Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) / Variational modal decomposition (VMD)

引用本文

导出引用
董霄峰1, 2, 时泽坤1, 2, 彭泓浩1, 2. 抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究[J]. 振动与冲击, 2025, 44(9): 214-222
DONG Xiaofeng1, 2, SHI Zekun1, 2, PENG Honghao1, 2. Modal parametric identification method of offshore wind power structure to resist effects of low-frequency high-energy noise[J]. Journal of Vibration and Shock, 2025, 44(9): 214-222

参考文献

[1]   SERGIO PEREIRA, JOAO PACHECO, FRANCISCO PIMENTA, et al. Contributions for enhanced tracking of (onshore) wind turbines modal parameters [J]. Engineering Structures, 2023, 274: 115120.
[2]   JOSUE PACHECO-CHERREZ, DIEGO CARDENAS, ARTURO DELGADO-GUTIERREZ, et al. Operational modal analysis for damage detection in a rotating wind turbine blade in the presence of measurement noise [J]. Composite Structures, 2023, 321: 117298.
[3]   JOSUE PACHECO-CHERREZ, OLIVER PROBST. Vibration-based damage detection in a wind turbine blade through operational modal analysis under wind excitation [J]. Materials today: proceedings, 2022, 56: 291-297.
[4]   AMIRALI SADEQI, SHAPOUR MORADI. A new SVD-based filtering technique for operational modal analysis in the presence of harmonic excitation and noise [J]. Journal of Sound and Vibration, 2021, 510: 116252.
[5]   Yin M, Roy S. Smith. On Low-Rank Hankel Matrix Denoising[J]. IFAC-Papers On Line, 2021, 54(7): 198-203.
[6]   Li J, Chen Z, Li S. Selection of the number of effective singular values for noise reduction[J]. Mechanical Systems and Signal Processing, 2023, 191: 110175.
[7]  李文峰,许爱强,戴豪民,等.基于矩阵秩最小化和统计修正的信号降噪方法研究[J].振动与冲击,2015,34(15):38-44.
LI Wenfeng, XU Aiqiang, DAI Haomin, et al. Signal denoising method based on matrix rank minimization and statistical modification [J]. Journal of Vibration and Shock,2020,39(12):221-226.
[8]   MEHRAN POURGHOLI, MOHSEN M. GILARLUE, TOURAJ VAHDAINI, et al. Influence of Hankel matrix dimension on system identification of structures using stochastic subspace algorithms [J]. Mechanical Systems and Signal Processing, 2023, 186: 109893.
[9]   Lian J, Liu Z, Wang H, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic [J]. Mechanical Systems and Signal Processing, 2018, 107: 53-77.
[10]  Shang X, Huang T, Chen H, et al. Recursive variational mode decomposition enhanced by orthogonalization algorithm for accurate structural modal identification [J]. Mechanical Systems and Signal Processing, 2023, 197: 110358.
[11]  冯帅,曹茹茹,马愈昭,等.改进CEEMDAN结合新型小波变换的激光雷达去噪算法[J/OL].(2024-04-24)[2024-07-19].https://link.cnki.net/urlid/11.2422.TN.20240419.1758.016.
[12]  Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-543.
[13]  姜军倪,董霄峰,练继建,等.海上风电筒型基础结构体系阻尼特性研究[J].太阳能学报,2022,43(11):285-291.
JIANG Junni, DONG Xiaofeng, LIAN Jijian, et al. Research on damping characteristics of offshore wind turbine system supported by bucket foundation[J]. ACTA ENERGIAESOLARIS SINICA, 2022,43(11):285-291.
[14]  傅志方,华宏星. 模态分析理论与应用[M].上海交通大学出版社,2000.
FU Zhifang, HUA Hongxing. Theory and Applications of Modal Analysis[M]. Shanghai Jiaotong University Press.
[15]  Prasanth R K. State Space System Identification Approach to Radar Data Processing [J]. Transactions on Signal Processing, 2011, 59(8): 3675-3684. 
[16]  XUE J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science and Control Engineering, 2020, 8(1): 22-34. 
[17]  唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(05):73-81.
TANG Guiji, WNG Xiaolong. Parameter optimization variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University, 2015,49(05):73-81.
[18] 瞿金秀,史小伟,石长全,等.基于SSA-VMD和ANFIS的粘弹夹层结构老化状态智能识别方法[J/OL].(2024-02-04)[2024-07-19].https://link.cnki.net/urlid/32.1349.TB.20240202.1046.004.
 [19]苏媛媛. 海上风机支撑结构振动传递特性研究[D].天津大学,2023.
SU Yuanyuan. Research on Vibration Transmission Characteristics of Offshore Wind Turbine Supporting Structure[D]. Tianjin University, 2023.
 [20]姜军倪.海上风电筒型基础结构体系阻尼特性及振动控制研究[D].天津大学,2021.
JIANG Junni. Damping Characteristics and Vibration Control of Offshore Wind Turbine Structures System on Bucket Foundation [D]. Tianjin University, ,2021.
 [21]DNVGL-ST-0126. Support structures for wind turbines[S]. Norway: Det Norske Veritas.2016.

PDF(2879 KB)

Accesses

Citation

Detail

段落导航
相关文章

/